Your browser doesn't support javascript.
loading
Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor.
Firsov, Alexander M; Pfeffermann, Juergen; Benditkis, Anton S; Rokitskaya, Tatyana I; Kozlov, Anton S; Kotova, Elena A; Krasnovsky, Alexander A; Pohl, Peter; Antonenko, Yuri N.
Afiliación
  • Firsov AM; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
  • Pfeffermann J; Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria.
  • Benditkis AS; Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
  • Rokitskaya TI; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
  • Kozlov AS; Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
  • Kotova EA; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
  • Krasnovsky AA; Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
  • Pohl P; Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria. Electronic address: peter.pohl@jku.at.
  • Antonenko YN; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia. Electronic address: antonen@belozersky.msu.ru.
J Photochem Photobiol B ; 239: 112633, 2023 Feb.
Article en En | MEDLINE | ID: mdl-36608401
ABSTRACT
The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited "molecular drill" oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oxígeno Singlete / Gramicidina Tipo de estudio: Etiology_studies Idioma: En Revista: J Photochem Photobiol B Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Rusia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oxígeno Singlete / Gramicidina Tipo de estudio: Etiology_studies Idioma: En Revista: J Photochem Photobiol B Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Rusia