Your browser doesn't support javascript.
loading
Measuring the principal Hugoniot of inertial-confinement-fusion-relevant TMPTA plastic foams.
Paddock, R W; von der Leyen, M W; Aboushelbaya, R; Norreys, P A; Chapman, D J; Eakins, D E; Oliver, M; Clarke, R J; Notley, M; Baird, C D; Booth, N; Spindloe, C; Haddock, D; Irving, S; Scott, R H H; Pasley, J; Cipriani, M; Consoli, F; Albertazzi, B; Koenig, M; Martynenko, A S; Wegert, L; Neumayer, P; Tchórz, P; Raczka, P; Mabey, P; Garbett, W; Goshadze, R M N; Karasiev, V V; Hu, S X.
Afiliación
  • Paddock RW; Department of Physics, Atomic and Laser Physics Sub-Department, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
  • von der Leyen MW; Department of Physics, Atomic and Laser Physics Sub-Department, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
  • Aboushelbaya R; Department of Physics, Atomic and Laser Physics Sub-Department, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
  • Norreys PA; Department of Physics, Atomic and Laser Physics Sub-Department, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
  • Chapman DJ; Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
  • Eakins DE; Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
  • Oliver M; Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom.
  • Clarke RJ; Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom.
  • Notley M; Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom.
  • Baird CD; Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom.
  • Booth N; Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom.
  • Spindloe C; Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom.
  • Haddock D; Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom.
  • Irving S; Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom.
  • Scott RHH; Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom.
  • Pasley J; York Plasma Institute, School of Physics, Electronics and Technology, University of York, York YO10 5DD, United Kingdom.
  • Cipriani M; ENEA, Fusion and Technology for Nuclear Safety and Security Department, C.R.Frascati, via E. Fermi 45, 00044 Frascati, Rome, Italy.
  • Consoli F; ENEA, Fusion and Technology for Nuclear Safety and Security Department, C.R.Frascati, via E. Fermi 45, 00044 Frascati, Rome, Italy.
  • Albertazzi B; LULI - CNRS, CEA, Sorbonne Universités, Ecole Polytechnique, Institut Polytechnique de Paris-F-91120 Palaiseau cedex, France.
  • Koenig M; LULI - CNRS, CEA, Sorbonne Universités, Ecole Polytechnique, Institut Polytechnique de Paris-F-91120 Palaiseau cedex, France.
  • Martynenko AS; GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany.
  • Wegert L; GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany.
  • Neumayer P; GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany.
  • Tchórz P; Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw, Poland.
  • Raczka P; Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw, Poland.
  • Mabey P; Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
  • Garbett W; AWE plc, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom.
  • Goshadze RMN; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
  • Karasiev VV; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
  • Hu SX; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
Phys Rev E ; 107(2-2): 025206, 2023 Feb.
Article en En | MEDLINE | ID: mdl-36932569
ABSTRACT
Wetted-foam layers are of significant interest for inertial-confinement-fusion capsules, due to the control they provide over the convergence ratio of the implosion and the opportunity this affords to minimize hydrodynamic instability growth. However, the equation of state for fusion-relevant foams are not well characterized, and many simulations rely on modeling such foams as a homogeneous medium with the foam average density. To address this issue, an experiment was performed using the VULCAN Ndglass laser at the Central Laser Facility. The aim was to measure the principal Hugoniot of TMPTA plastic foams at 260mg/cm^{3}, corresponding to the density of liquid DT-wetted-foam layers, and their "hydrodynamic equivalent" capsules. A VISAR was used to obtain the shock velocity of both the foam and an α-quartz reference layer, while streaked optical pyrometry provided the temperature of the shocked material. The measurements confirm that, for the 20-120 GPa pressure range accessed, this material can indeed be well described using the equation of state of the homogeneous medium at the foam density.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido