Your browser doesn't support javascript.
loading
Platinum Metallization of Polyethylene Terephthalate by Supercritical Carbon Dioxide Catalyzation and the Tensile Fracture Strength.
Cheng, Po-Wei; Kurioka, Tomoyuki; Chen, Chun-Yi; Chang, Tso-Fu Mark; Chiu, Wan-Ting; Hosoda, Hideki; Takase, Kei; Ishihata, Hiroshi; Kurosu, Hiromichi; Sone, Masato.
Afiliación
  • Cheng PW; Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
  • Kurioka T; Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
  • Chen CY; Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
  • Chang TM; Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
  • Chiu WT; Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
  • Hosoda H; Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
  • Takase K; Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
  • Ishihata H; Division of Periodontology and Endodontology, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
  • Kurosu H; Cooperative Major in Human Centered Engineering, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan.
  • Sone M; Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
Materials (Basel) ; 16(6)2023 Mar 16.
Article en En | MEDLINE | ID: mdl-36984256
Polyethylene terephthalate (PET) is known to be highly inert, and this makes it difficult to be metallized. In addition, Pt electroless plating is rarely reported in the metallization of polymers. In this study, the metallization of biocompatible Pt metal is realized by supercritical CO2 (sc-CO2)-assisted electroless plating. The catalyst precursor used in the sc-CO2 catalyzation step is an organometallic compound, palladium (II) acetylacetonate (Pd(acac)2). The electrical resistance is evaluated, and a tape adhesion test is utilized to demonstrate intactness of the Pt layer on the PET film. The electrical resistance of the Pt/PET with 60 min of the Pt deposition time remains at a low level of 1.09 Ω after the adhesion test, revealing positive effects of the sc-CO2 catalyzation step. A tensile test is conducted to evaluate the mechanical strength of the Pt/PET. In-situ electrical resistances of the specimen are monitored during the tensile test. The fracture strength is determined from the stress value when the short circuit occurred. The fracture strength is 33.9 MPa for a specimen with 30 min of the Pt deposition time. As the Pt deposition time increases to 45 min and 60 min, the fracture strengths reach 52.3 MPa and 65.9 MPa, respectively. The promoted fracture strength and the decent electrical conductivity demonstrate the advantages toward biomedical devices.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Japón