Delineation of complex gene expression patterns in single cell RNA-seq data with ICARUS v2.0.
NAR Genom Bioinform
; 5(2): lqad032, 2023 Jun.
Article
en En
| MEDLINE
| ID: mdl-37007589
Complex biological traits and disease often involve patterns of gene expression that can be characterised and examined. Here we present ICARUS v2.0, an update to our single cell RNA-seq analysis web server with additional tools to investigate gene networks and understand core patterns of gene regulation in relation to biological traits. ICARUS v2.0 enables gene co-expression analysis with MEGENA, transcription factor regulated network identification with SCENIC, trajectory analysis with Monocle3, and characterisation of cell-cell communication with CellChat. Cell cluster gene expression profiles may be examined against Genome Wide Association Studies with MAGMA to find significant associations with GWAS traits. Additionally, differentially expressed genes may be compared against the Drug-Gene Interaction database (DGIdb 4.0) to facilitate drug discovery. ICARUS v2.0 offers a comprehensive toolbox of the latest single cell RNA-seq analysis methodologies packed into an efficient, user friendly, tutorial style web server application (accessible at https://launch.icarus-scrnaseq.cloud.edu.au/) that enables single cell RNA-seq analysis tailored to the user's dataset.
Texto completo:
1
Banco de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
NAR Genom Bioinform
Año:
2023
Tipo del documento:
Article
País de afiliación:
Nueva Zelanda