An SI3-σ arch stabilizes cyanobacteria transcription initiation complex.
Proc Natl Acad Sci U S A
; 120(16): e2219290120, 2023 04 18.
Article
en En
| MEDLINE
| ID: mdl-37036976
Multisubunit RNA polymerases (RNAPs) associate with initiation factors (σ in bacteria) to start transcription. The σ factors are responsible for recognizing and unwinding promoter DNA in all bacterial RNAPs. Here, we report two cryo-EM structures of cyanobacterial transcription initiation complexes at near-atomic resolutions. The structures show that cyanobacterial RNAP forms an "SI3-σ" arch interaction between domain 2 of σA (σ2) and sequence insertion 3 (SI3) in the mobile catalytic domain Trigger Loop (TL). The "SI3-σ" arch facilitates transcription initiation from promoters of different classes through sealing the main cleft and thereby stabilizing the RNAP-promoter DNA open complex. Disruption of the "SI3-σ" arch disturbs cyanobacteria growth and stress response. Our study reports the structure of cyanobacterial RNAP and a unique mechanism for its transcription initiation. Our data suggest functional plasticity of SI3 and provide the foundation for further research into cyanobacterial and chloroplast transcription.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Cianobacterias
/
Escherichia coli
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Año:
2023
Tipo del documento:
Article
País de afiliación:
China