Your browser doesn't support javascript.
loading
Ångström-resolution fluorescence microscopy.
Reinhardt, Susanne C M; Masullo, Luciano A; Baudrexel, Isabelle; Steen, Philipp R; Kowalewski, Rafal; Eklund, Alexandra S; Strauss, Sebastian; Unterauer, Eduard M; Schlichthaerle, Thomas; Strauss, Maximilian T; Klein, Christian; Jungmann, Ralf.
Afiliación
  • Reinhardt SCM; Max Planck Institute of Biochemistry, Planegg, Germany.
  • Masullo LA; Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.
  • Baudrexel I; Max Planck Institute of Biochemistry, Planegg, Germany.
  • Steen PR; Max Planck Institute of Biochemistry, Planegg, Germany.
  • Kowalewski R; Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany.
  • Eklund AS; Max Planck Institute of Biochemistry, Planegg, Germany.
  • Strauss S; Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.
  • Unterauer EM; Max Planck Institute of Biochemistry, Planegg, Germany.
  • Schlichthaerle T; Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.
  • Strauss MT; Max Planck Institute of Biochemistry, Planegg, Germany.
  • Klein C; Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany.
  • Jungmann R; Max Planck Institute of Biochemistry, Planegg, Germany.
Nature ; 617(7962): 711-716, 2023 05.
Article en En | MEDLINE | ID: mdl-37225882
ABSTRACT
Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1-6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7-14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ADN / Células / Antígenos CD20 / Microscopía Fluorescente Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ADN / Células / Antígenos CD20 / Microscopía Fluorescente Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Alemania