Your browser doesn't support javascript.
loading
MFEE: a multi-word lexical feature enhancement framework for Chinese geological hazard event extraction.
Gong, Jie; Cao, Yang; Zijing, Miao; Chen, Qiaosen.
Afiliación
  • Gong J; School of Computer Science, South China Normal University, Guangzhou, Guangdong, China.
  • Cao Y; School of Computer Science, South China Normal University, Guangzhou, Guangdong, China.
  • Zijing M; School of Computer Science, South China Normal University, Guangzhou, Guangdong, China.
  • Chen Q; School of Computer Science, South China Normal University, Guangzhou, Guangdong, China.
PeerJ Comput Sci ; 9: e1275, 2023.
Article en En | MEDLINE | ID: mdl-37346591
Event Extraction (EE) is an essential and challenging task in information extraction. Most existing event extraction methods do not specifically target the Chinese geological hazards domain. This is due to the unique characteristics of the Chinese language and the lack of Chinese geological hazard datasets. To address these challenges, we propose a novel multi-word lexical feature enhancement framework (MFEE). It effectively implements Chinese event extraction in the geological hazard domain by introducing lexical information and the designed lexical feature weighting decision method. In addition, we construct a large-scale Chinese geological hazard dataset (CGHaz). Experimental results on this dataset and the ACE 2005 dataset demonstrate the approach's effectiveness. The datasets can be found at https://github.com/JieGong1130/MFEE-dataset. The code can be found at https://github.com/JieGong1130/MFEE-master.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: PeerJ Comput Sci Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: PeerJ Comput Sci Año: 2023 Tipo del documento: Article País de afiliación: China