Your browser doesn't support javascript.
loading
Suspended hydrogel culture as a method to scale up intestinal organoids.
Co, Julia Y; Klein, Jessica A; Kang, Serah; Homan, Kimberly A.
Afiliación
  • Co JY; Complex in vitro Systems, Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
  • Klein JA; Complex in vitro Systems, Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
  • Kang S; Complex in vitro Systems, Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
  • Homan KA; Complex in vitro Systems, Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA. homan.kimberly@gene.com.
Sci Rep ; 13(1): 10412, 2023 06 27.
Article en En | MEDLINE | ID: mdl-37369732
ABSTRACT
Primary tissue-derived epithelial organoids are a physiologically relevant in vitro intestinal model that have been implemented for both basic research and drug development applications. The existing method of culturing intestinal organoids in surface-attached native extracellular matrix (ECM) hydrogel domes is not readily amenable to large-scale culture and contributes to culture heterogeneity. We have developed a method of culturing intestinal organoids within suspended basement membrane extract (BME) hydrogels of various geometries, which streamlines the protocol, increases the scalability, enables kinetic sampling, and improves culture uniformity without specialized equipment or additional expertise. We demonstrate the compatibility of this method with multiple culture formats, and provide examples of suspended BME hydrogel organoids in downstream applications implementation in a medium-throughput drug screen and generation of Transwell monolayers for barrier evaluation. The suspended BME hydrogel culture method will allow intestinal organoids, and potentially other organoid types, to be used more widely and at higher throughputs than previously possible.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Hidrogeles / Intestinos Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Hidrogeles / Intestinos Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos