Your browser doesn't support javascript.
loading
Understanding the Structural Evolution of IrFeCoNiCu High-Entropy Alloy Nanoparticles under the Acidic Oxygen Evolution Reaction.
Maulana, Arifin Luthfi; Chen, Peng-Cheng; Shi, Zixiao; Yang, Yao; Lizandara-Pueyo, Carlos; Seeler, Fabian; Abruña, Héctor D; Muller, David; Schierle-Arndt, Kerstin; Yang, Peidong.
Afiliación
  • Maulana AL; Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.
  • Chen PC; California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States.
  • Shi Z; California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States.
  • Yang Y; Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States.
  • Lizandara-Pueyo C; Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
  • Seeler F; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States.
  • Abruña HD; School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, United States.
  • Muller D; Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
  • Schierle-Arndt K; Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 94720, United States.
  • Yang P; California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States.
Nano Lett ; 23(14): 6637-6644, 2023 Jul 26.
Article en En | MEDLINE | ID: mdl-37406363
High-entropy alloy (HEA) nanoparticles are promising catalyst candidates for the acidic oxygen evolution reaction (OER). Herein, we report the synthesis of IrFeCoNiCu-HEA nanoparticles on a carbon paper substrate via a microwave-assisted shock synthesis method. Under OER conditions in 0.1 M HClO4, the HEA nanoparticles exhibit excellent activity with an overpotential of ∼302 mV measured at 10 mA cm-2 and improved stability over 12 h of operation compared to the monometallic Ir counterpart. Importantly, an active Ir-rich shell layer with nanodomain features was observed to form on the surface of IrFeCoNiCu-HEA nanoparticles immediately after undergoing electrochemical activation, mainly due to the dissolution of the constituent 3d metals. The core of the particles was able to preserve the characteristic homogeneous single-phase HEA structure without significant phase separation or elemental segregation. This work illustrates that under acidic operating conditions, the near-surface structure of HEA nanoparticles is susceptible to a certain degree of structural dynamics.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos