Your browser doesn't support javascript.
loading
Novel Insights into the Dermal Bioaccessibility and Human Exposure to Brominated Flame Retardant Additives in Microplastics.
Abafe, Ovokeroye A; Harrad, Stuart; Abdallah, Mohamed Abou-Elwafa.
Afiliación
  • Abafe OA; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
  • Harrad S; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
  • Abdallah MA; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Environ Sci Technol ; 57(29): 10554-10562, 2023 07 25.
Article en En | MEDLINE | ID: mdl-37450894
ABSTRACT
In this study, we optimized and applied an in vitro physiologically based extraction test to investigate the dermal bioaccessibility of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD), incorporated as additives in different types of microplastics (MPs), and assess human dermal exposure to these chemicals. The dermal bioaccessibility of PBDEs in polyethylene (PE) MPs was significantly higher (P < 0.05) than in polypropylene (PP) MPs. Both log Kow and water solubility influenced the dermal bioaccessibility of PBDEs. For HBCDDs in polystyrene MPs, the dermally bioaccessible fractions were 1.8, 2.0, and 1.6% of the applied dose for α-, ß-, and γ-HBCDDs, respectively. MP particle size and the presence of cosmetic formulations (antiperspirant, foundation, moisturizer and sunscreen) influenced the bioaccessibility of PBDEs and HBCDDs in MP matrices at varying degrees of significance. Human exposure to ∑PBDEs and ∑HBCDDs via dermal contact with MPs ranged from 0.02 to 22.2 and 0.01 to 231 ng (kg bw)-1 d-1 and from 0.02 to 6.27 and 0.2 to 65 ng (kg bw)-1 d-1 for adults and toddlers, respectively. Dermal exposure to PBDEs and HBCDDs in MPs is substantial, highlighting for the first time the significance of the dermal pathway as a major route of human exposure to additive chemicals in microplastics.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Retardadores de Llama Límite: Adult / Humans Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Retardadores de Llama Límite: Adult / Humans Idioma: En Revista: Environ Sci Technol Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido