Reshaping Inner Helmholtz Layer and Electrolyte Structure via Multifunctional Organic Molecule Enabling Dendrite-Free Zn Metal Anode.
Small
; 19(47): e2304751, 2023 Nov.
Article
en En
| MEDLINE
| ID: mdl-37485645
The dendrite growth and parasitic reactions that occur on Zn metal anode (ZMA)/electrolyte interface hinder the development of aqueous zinc ion batteries (AZIBs) in next-generation renewable energy storage systems. Fortunately, reconstructing the inner Helmholtz layer (IHL) by introducing an electrolyte additive, is viewed as one of the most promising strategies to harvest the stable ZMA. Herein, (4-chloro-3-nitrophenyl) (pyridin-4-yl) methanone (CNPM) with quadruple functional groups is introduced into the ZnSO4 electrolyte to reshape the interface between ZMA and electrolyte and change the solvation structure of Zn2+ . Density functional theory (DFT) calculations manifest that the âCâO, âCl, âCâNâ, and âNO2 functional groups of CNPM interact with metallic Zn simultaneously and adsorb on the ZMA surface in a parallel arrangement manner, thus forming a water-poor IHL and creating well-arranged ion transportation channels. Furthermore, theoretical calculations and experimental results demonstrate that CNPM absorbed on the Zn anode surface can serve as zincophilic sites for inducing uniform Zn deposition along the (002) plane. Benefiting from the synergistic effect of these functions, the dendrite growth and parasitic reactions are suppressed significantly. As a result, ZMA exhibits a long cycle life (2900 h) and high coulombic efficiency (CE) (500 cycles) in the ZnSO4 +CNPM electrolyte.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article