Restored UBE2C expression in islets promotes ß-cell regeneration in mice by ubiquitinating PER1.
Cell Mol Life Sci
; 80(8): 226, 2023 Jul 24.
Article
en En
| MEDLINE
| ID: mdl-37486389
Insulin deficiency may be due to the reduced proliferation capacity of islet ß-cell, contributing to the onset of diabetes. It is therefore imperative to investigate the mechanism of the ß-cell regeneration in the islets. NKX6.1, one of the critical ß-cell transcription factors, is a pivotal element in ß-cell proliferation. The ubiquitin-binding enzyme 2C (UBE2C) was previously reported as one of the downstream molecules of NKX6.1 though the exact function and mechanism of UBE2C in ß-cell remain to be elucidated. Here, we determined a subpopulation of islet ß-cells highly expressing UBE2C, which proliferate actively. We also discovered that ß-cell compensatory proliferation was induced by UBE2C via the cell cycle renewal pathway in weaning and high-fat diet (HFD)-fed mice. Moreover, the reduction of ß-cell proliferation led to insulin deficiency in ßUbe2cKO mice and, therefore, developed type 2 diabetes. UBE2C was found to regulate PER1 degradation through the ubiquitin-proteasome pathway via its association with a ubiquitin ligase, CUL1. PER1 inhibition rescues UBE2C knockout-induced ß-cell growth inhibition both in vivo and in vitro. Notably, overexpression of UBE2C via lentiviral transduction in pancreatic islets was able to relaunch ß-cell proliferation in STZ-induced diabetic mice and therefore partially alleviated hyperglycaemia and glucose intolerance. This study indicates that UBE2C positively regulates ß-cell proliferation by promoting ubiquitination and degradation of the biological clock suppressor PER1. The beneficial effect of UBE2C on islet ß-cell regeneration suggests a promising application in treating diabetic patients with ß-cell deficiency.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Islotes Pancreáticos
/
Diabetes Mellitus Experimental
/
Diabetes Mellitus Tipo 2
/
Células Secretoras de Insulina
Límite:
Animals
Idioma:
En
Revista:
Cell Mol Life Sci
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2023
Tipo del documento:
Article
País de afiliación:
China