Your browser doesn't support javascript.
loading
Deep Learning Segmentation of the Nucleus Basalis of Meynert on 3T MRI.
Doss, D J; Johnson, G W; Narasimhan, S; Shless, J S; Jiang, J W; González, H F J; Paulo, D L; Lucas, A; Davis, K A; Chang, C; Morgan, V L; Constantinidis, C; Dawant, B M; Englot, D J.
Afiliación
  • Doss DJ; From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee derekjdoss@gmail.com.
  • Johnson GW; Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee.
  • Narasimhan S; Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee.
  • Shless JS; From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee.
  • Jiang JW; Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee.
  • González HFJ; Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee.
  • Paulo DL; From the Department of Biomedical Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang., V.L.M., C. Constantinidis, D.J.E.), Vanderbilt University, Nashville, Tennessee.
  • Lucas A; Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee.
  • Davis KA; Vanderbilt Institute for Surgery and Engineering (D.J.D., G.W.J., S.N., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Nashville, Tennessee.
  • Chang C; Department of Neurological Surgery (S.N., J.S.S., J.W.J., D.L.P., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee.
  • Morgan VL; Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee.
  • Constantinidis C; Department of Neurological Surgery (S.N., J.S.S., J.W.J., D.L.P., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee.
  • Dawant BM; Institute of Imaging Science (D.J.D., G.W.J., S.N., J.S.S., J.W.J., H.F.J.G., C. Chang, V.L.M., B.M.D., D.J.E.), Vanderbilt University, Nashville, Tennessee.
  • Englot DJ; Department of Neurological Surgery (S.N., J.S.S., J.W.J., D.L.P., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, Tennessee.
AJNR Am J Neuroradiol ; 44(9): 1020-1025, 2023 09.
Article en En | MEDLINE | ID: mdl-37562826
ABSTRACT
BACKGROUND AND

PURPOSE:

The nucleus basalis of Meynert is a key subcortical structure that is important in arousal and cognition and has been explored as a deep brain stimulation target but is difficult to study due to its small size, variability among patients, and lack of contrast on 3T MR imaging. Thus, our goal was to establish and evaluate a deep learning network for automatic, accurate, and patient-specific segmentations with 3T MR imaging. MATERIALS AND

METHODS:

Patient-specific segmentations can be produced manually; however, the nucleus basalis of Meynert is difficult to accurately segment on 3T MR imaging, with 7T being preferred. Thus, paired 3T and 7T MR imaging data sets of 21 healthy subjects were obtained. A test data set of 6 subjects was completely withheld. The nucleus was expertly segmented on 7T, providing accurate labels for the paired 3T MR imaging. An external data set of 14 patients with temporal lobe epilepsy was used to test the model on brains with neurologic disorders. A 3D-Unet convolutional neural network was constructed, and a 5-fold cross-validation was performed.

RESULTS:

The novel segmentation model demonstrated significantly improved Dice coefficients over the standard probabilistic atlas for both healthy subjects (mean, 0.68 [SD, 0.10] versus 0.45 [SD, 0.11], P = .002, t test) and patients (0.64 [SD, 0.10] versus 0.37 [SD, 0.22], P < .001). Additionally, the model demonstrated significantly decreased centroid distance in patients (1.18 [SD, 0.43] mm, 3.09 [SD, 2.56] mm, P = .007).

CONCLUSIONS:

We developed the first model, to our knowledge, for automatic and accurate patient-specific segmentation of the nucleus basalis of Meynert. This model may enable further study into the nucleus, impacting new treatments such as deep brain stimulation.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Núcleo Basal de Meynert / Aprendizaje Profundo Límite: Humans Idioma: En Revista: AJNR Am J Neuroradiol Año: 2023 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Núcleo Basal de Meynert / Aprendizaje Profundo Límite: Humans Idioma: En Revista: AJNR Am J Neuroradiol Año: 2023 Tipo del documento: Article