Using interpretable machine learning to extend heterogeneous antibody-virus datasets.
Cell Rep Methods
; 3(8): 100540, 2023 08 28.
Article
en En
| MEDLINE
| ID: mdl-37671020
A central challenge in biology is to use existing measurements to predict the outcomes of future experiments. For the rapidly evolving influenza virus, variants examined in one study will often have little to no overlap with other studies, making it difficult to discern patterns or unify datasets. We develop a computational framework that predicts how an antibody or serum would inhibit any variant from any other study. We validate this method using hemagglutination inhibition data from seven studies and predict 2,000,000 new values ± uncertainties. Our analysis quantifies the transferability between vaccination and infection studies in humans and ferrets, shows that serum potency is negatively correlated with breadth, and provides a tool for pandemic preparedness. In essence, this approach enables a shift in perspective when analyzing data from "what you see is what you get" into "what anyone sees is what everyone gets."
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Aceites Volátiles
/
Hurones
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Cell Rep Methods
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos