Your browser doesn't support javascript.
loading
From genetic correlations of Alzheimer's disease to classification with artificial neural network models.
Cava, Claudia; D'Antona, Salvatore; Maselli, Francesca; Castiglioni, Isabella; Porro, Danilo.
Afiliación
  • Cava C; Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F. Cervi 93, Segrate-Milan, 20090, Milan, Italy. claudia.cava@ibfm.cnr.it.
  • D'Antona S; Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza Della Vittoria 15, 27100, Pavia, Italy. claudia.cava@ibfm.cnr.it.
  • Maselli F; Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F. Cervi 93, Segrate-Milan, 20090, Milan, Italy.
  • Castiglioni I; Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F. Cervi 93, Segrate-Milan, 20090, Milan, Italy.
  • Porro D; Department of Physics "Giuseppe Occhialini", University of Milan-Bicocca Piazza Dell'Ateneo Nuovo, 20126, Milan, Italy.
Funct Integr Genomics ; 23(4): 293, 2023 Sep 08.
Article en En | MEDLINE | ID: mdl-37682415
ABSTRACT
Sporadic Alzheimer's disease (AD) is a complex neurological disorder characterized by many risk loci with potential associations with different traits and diseases. AD, characterized by a progressive loss of neuronal functions, manifests with different symptoms such as decline in memory, movement, coordination, and speech. The mechanisms underlying the onset of AD are not always fully understood, but involve a multiplicity of factors. Early diagnosis of AD plays a central role as it can offer the possibility of early treatment, which can slow disease progression. Currently, the methods of diagnosis are cognitive testing, neuroimaging, or cerebrospinal fluid analysis that can be time-consuming, expensive, invasive, and not always accurate. In the present study, we performed a genetic correlation analysis using genome-wide association statistics from a large study of AD and UK Biobank, to examine the association of AD with other human traits and disorders. In addition, since hippocampus, a part of cerebral cortex could play a central role in several traits that are associated with AD; we analyzed the gene expression profiles of hippocampus of AD patients applying 4 different artificial neural network models. We found 65 traits correlated with AD grouped into 9 clusters medical conditions, fluid intelligence, education, anthropometric measures, employment status, activity, diet, lifestyle, and sexuality. The comparison of different 4 neural network models along with feature selection methods on 5 Alzheimer's gene expression datasets showed that the simple basic neural network model obtains a better performance (66% of accuracy) than other more complex methods with dropout and weight regularization of the network.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedad de Alzheimer Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Funct Integr Genomics Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedad de Alzheimer Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Funct Integr Genomics Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2023 Tipo del documento: Article País de afiliación: Italia