Your browser doesn't support javascript.
loading
Grouper Atg14 promotes Singapore grouper iridovirus (SGIV) replication by inhibiting the host innate immune response.
Chen, Hong; Xu, Linting; Xu, Zhuqing; Wu, Siting; Zhang, Xin; Liu, Shaoli; Zhan, Zhouling; Xu, Qiongyue; Lei, Xiaoxia; Cao, Helong; Qin, Qiwei; Wei, Jingguang.
Afiliación
  • Chen H; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
  • Xu L; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
  • Xu Z; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
  • Wu S; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
  • Zhang X; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
  • Liu S; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
  • Zhan Z; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
  • Xu Q; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
  • Lei X; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
  • Cao H; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
  • Qin Q; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China. Electronic address: qinqw@scau.edu.cn.
  • Wei J; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China; Department of Biological Sciences, National University of S
Fish Shellfish Immunol ; 141: 109067, 2023 Oct.
Article en En | MEDLINE | ID: mdl-37689226
ABSTRACT
As one of the important members of the autophagy-related protein family, Atg14 plays a key role in the formation and maturation of autophagosomes. However, little is known about the potential roles of fish Atg14 and its roles in virus infection. In the present study, the homolog of Atg14 (EcAtg14) from the orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) of EcAtg14 consists of 1530 nucleotides, encoding 509 amino acids, with a predicted molecular weight of 56.9 kDa. EcAtg14 was distributed in all tested tissues, with higher expression in liver, blood and spleen. The expression of EcAtg14 was increased in grouper spleen (GS) cells after Singapore grouper iridovirus (SGIV) infection. EcAtg14 was distributed in the cytoplasm of GS cells. Overexpression of EcAtg14 promoted SGIV replication in GS cells and inhibited IFN3, ISRE and NF-κB promoter activities. Co-immunoprecipitation results showed that there was an interaction between EcAtg14 and EcBeclin. EcAtg14 also promoted the synthesis of LC3-II in GS cells. These findings provide a basis for understanding the innate immune mechanism of grouper against viral infection.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Lubina / Ranavirus / Iridovirus / Infecciones por Virus ADN / Enfermedades de los Peces Tipo de estudio: Prognostic_studies Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Fish Shellfish Immunol Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Lubina / Ranavirus / Iridovirus / Infecciones por Virus ADN / Enfermedades de los Peces Tipo de estudio: Prognostic_studies Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Fish Shellfish Immunol Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2023 Tipo del documento: Article País de afiliación: China