Your browser doesn't support javascript.
loading
standR: spatial transcriptomic analysis for GeoMx DSP data.
Liu, Ning; Bhuva, Dharmesh D; Mohamed, Ahmed; Bokelund, Micah; Kulasinghe, Arutha; Tan, Chin Wee; Davis, Melissa J.
Afiliación
  • Liu N; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.
  • Bhuva DD; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
  • Mohamed A; South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
  • Bokelund M; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.
  • Kulasinghe A; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
  • Tan CW; South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
  • Davis MJ; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia.
Nucleic Acids Res ; 52(1): e2, 2024 Jan 11.
Article en En | MEDLINE | ID: mdl-37953397
To gain a better understanding of the complexity of gene expression in normal and diseased tissues it is important to account for the spatial context and identity of cells in situ. State-of-the-art spatial profiling technologies, such as the Nanostring GeoMx Digital Spatial Profiler (DSP), now allow quantitative spatially resolved measurement of the transcriptome in tissues. However, the bioinformatics pipelines currently used to analyse GeoMx data often fail to successfully account for the technical variability within the data and the complexity of experimental designs, thus limiting the accuracy and reliability of the subsequent analysis. Carefully designed quality control workflows, that include in-depth experiment-specific investigations into technical variation and appropriate adjustment for such variation can address this issue. Here, we present standR, an R/Bioconductor package that enables an end-to-end analysis of GeoMx DSP data. With four case studies from previously published experiments, we demonstrate how the standR workflow can enhance the statistical power of GeoMx DSP data analysis and how the application of standR enables scientists to develop in-depth insights into the biology of interest.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Perfilación de la Expresión Génica / Transcriptoma Idioma: En Revista: Nucleic Acids Res Año: 2024 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Perfilación de la Expresión Génica / Transcriptoma Idioma: En Revista: Nucleic Acids Res Año: 2024 Tipo del documento: Article País de afiliación: Australia