Your browser doesn't support javascript.
loading
Polymer Hydrogels and Frontal Polymerization: A Winning Coupling.
Mariani, Alberto; Malucelli, Giulio.
Afiliación
  • Mariani A; Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
  • Malucelli G; Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali, INSTM, Via Giusti 9, 50121 Firenze, Italy.
Polymers (Basel) ; 15(21)2023 Oct 27.
Article en En | MEDLINE | ID: mdl-37959922
ABSTRACT
Polymer hydrogels are 3D networks consisting of hydrophilic crosslinked macromolecular chains, allowing them to swell and retain water. Since their invention in the 1960s, they have become an outstanding pillar in the design, development, and application of engineered polymer systems suitable for biomedical and pharmaceutical applications (such as drug or cell delivery, the regeneration of hard and soft tissues, wound healing, and bleeding prevention, among others). Despite several well-established synthetic routes for developing polymer hydrogels based on batch polymerization techniques, about fifteen years ago, researchers started to look for alternative methods involving simpler reaction paths, shorter reaction times, and lower energy consumption. In this context, frontal polymerization (FP) has undoubtedly become an alternative and efficient reaction model that allows for the conversion of monomers into polymers via a localized and propagating reaction-by means of exploiting the formation and propagation of a "hot" polymerization front-able to self-sustain and propagate throughout the monomeric mixture. Therefore, the present work aims to summarize the main research outcomes achieved during the last few years concerning the design, preparation, and application of FP-derived polymeric hydrogels, demonstrating the feasibility of this technique for the obtainment of functional 3D networks and providing the reader with some perspectives for the forthcoming years.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Italia