Spatial-temporal differentiation and control strategies of nitrogen environmental loss in China's coastal regions based on flow analysis.
J Environ Manage
; 351: 119667, 2024 Feb.
Article
en En
| MEDLINE
| ID: mdl-38042075
Nitrogen pollution emissions from human production and living activities in coastal regions are important topics in the management of environmental pollution in coastal waters. However, to date, there has been relatively little research systematically assessing the environmental loss of nitrogen (NEL) from human activities that negatively affect marine ecosystems. This study categorised emission sources into five subsystems, namely livestock, farming, aquatic, industrial, and residential. Through flow analysis, the anthropogenic emissions of nitrogen in the gas, liquid, and solid phases from 11 coastal provinces in China in 2011, 2015, and 2020 were determined. A nitrogen cost index was constructed by combining the social indicators of each province. The effectiveness of nitrogen emission control since the land-sea coordination and the future challenges for the coastal region were discussed from various perspectives. The results of the study showed that the total NEL that poses a potential threat to marine ecosystems in coastal areas of China has decreased from 18.93 TgN to 14.66 TgN since the proposal of land-sea coordination, with livestock systems and aquatic systems emitting the most. The Bohai and Yellow Seas area were most threatened by nitrogen pollution. Among the three oceanic pathways, liquid-phase nitrogen discharge from each subsystem was effectively controlled, and the control of gas-phase nitrogen emissions is still the most numerous NEL state, although it has had a significant effect. The results of the correlation analysis suggest that NEL flow can characterize the regional management of nutrient-based organic pollutants. Past management tools and environmental investments in China have been more effective in controlling emissions from point and line sources involving artificial facilities, but less direct effect on mariculture. How to control surface source pollution from livestock and aquaculture will be an important challenge to reduce reactive nitrogen emissions in the future.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Contaminantes Químicos del Agua
/
Ecosistema
Límite:
Humans
País/Región como asunto:
Asia
Idioma:
En
Revista:
J Environ Manage
Año:
2024
Tipo del documento:
Article
País de afiliación:
China