Your browser doesn't support javascript.
loading
Salt Effects on Caffeine across Concentration Regimes.
Hervø-Hansen, Stefan; Polák, Jakub; Tomandlová, Markéta; Dzubiella, Joachim; Heyda, Jan; Lund, Mikael.
Afiliación
  • Hervø-Hansen S; Division of Computational Chemistry, Department of Chemistry, Lund University, Lund SE 221 00, Sweden.
  • Polák J; Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
  • Tomandlová M; Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, Prague CZ-16628, Czech Republic.
  • Dzubiella J; Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, Prague CZ-16628, Czech Republic.
  • Heyda J; Physikalisches Institut, Albert-Ludwigs Universität Freiburg, Hermann-Herder-Straße 3, Freiburg Im Breisgau D-79104, Germany.
  • Lund M; Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, Prague CZ-16628, Czech Republic.
J Phys Chem B ; 127(48): 10253-10265, 2023 Dec 07.
Article en En | MEDLINE | ID: mdl-38058160
ABSTRACT
Salts affect the solvation thermodynamics of molecules of all sizes; the Hofmeister series is a prime example in which different ions lead to salting-in or salting-out of aqueous proteins. Early work of Tanford led to the discovery that the solvation of molecular surface motifs is proportional to the solvent accessible surface area (SASA), and later studies have shown that the proportionality constant varies with the salt concentration and type. Using multiscale computer simulations combined with vapor-pressure osmometry on caffeine-salt solutions, we reveal that this SASA description captures a rich set of molecular driving forces in tertiary solutions at changing solute and osmolyte concentrations. Central to the theoretical work is a new potential energy function that depends on the instantaneous surface area, salt type, and concentration. Used in, e.g., Monte Carlo simulations, this allows for a highly efficient exploration of many-body interactions and the resulting thermodynamics at elevated solute and salt concentrations.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Suecia