Your browser doesn't support javascript.
loading
Frequentmers - a novel way to look at metagenomic next generation sequencing data and an application in detecting liver cirrhosis.
Mouratidis, Ioannis; Chantzi, Nikol; Khan, Umair; Konnaris, Maxwell A; Chan, Candace S Y; Mareboina, Manvita; Moeckel, Camille; Georgakopoulos-Soares, Ilias.
Afiliación
  • Mouratidis I; Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA. ipm5219@psu.edu.
  • Chantzi N; Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA.
  • Khan U; Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA.
  • Konnaris MA; Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA.
  • Chan CSY; Department of Statistics, Penn State, University Park, PA, USA.
  • Mareboina M; Huck Institutes of the Life Sciences, Penn State, University Park, PA, USA.
  • Moeckel C; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
  • Georgakopoulos-Soares I; Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA.
BMC Genomics ; 24(1): 768, 2023 Dec 12.
Article en En | MEDLINE | ID: mdl-38087204
Early detection of human disease is associated with improved clinical outcomes. However, many diseases are often detected at an advanced, symptomatic stage where patients are past efficacious treatment periods and can result in less favorable outcomes. Therefore, methods that can accurately detect human disease at a presymptomatic stage are urgently needed. Here, we introduce "frequentmers"; short sequences that are specific and recurrently observed in either patient or healthy control samples, but not in both. We showcase the utility of frequentmers for the detection of liver cirrhosis using metagenomic Next Generation Sequencing data from stool samples of patients and controls. We develop classification models for the detection of liver cirrhosis and achieve an AUC score of 0.91 using ten-fold cross-validation. A small subset of 200 frequentmers can achieve comparable results in detecting liver cirrhosis. Finally, we identify the microbial organisms in liver cirrhosis samples, which are associated with the most predictive frequentmer biomarkers.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Secuenciación de Nucleótidos de Alto Rendimiento / Cirrosis Hepática Límite: Humans Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Secuenciación de Nucleótidos de Alto Rendimiento / Cirrosis Hepática Límite: Humans Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos