Your browser doesn't support javascript.
loading
Fast intratumor heterogeneity inference from single-cell sequencing data.
Kizilkale, Can; Rashidi Mehrabadi, Farid; Sadeqi Azer, Erfan; Pérez-Guijarro, Eva; Marie, Kerrie L; Lee, Maxwell P; Day, Chi-Ping; Merlino, Glenn; Ergün, Funda; Buluç, Aydin; Sahinalp, S Cenk; Malikic, Salem.
Afiliación
  • Kizilkale C; Department of Electrical Engineering and Computer Sciences UC Berkeley, Berkeley, CA, USA.
  • Rashidi Mehrabadi F; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Sadeqi Azer E; Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  • Pérez-Guijarro E; Department of Computer Science, Indiana University, Bloomington, IN, USA.
  • Marie KL; Department of Computer Science, Indiana University, Bloomington, IN, USA.
  • Lee MP; Google LLC, Sunnyvale, CA, USA.
  • Day CP; Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  • Merlino G; Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  • Ergün F; Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  • Buluç A; Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  • Sahinalp SC; Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  • Malikic S; Department of Computer Science, Indiana University, Bloomington, IN, USA.
Nat Comput Sci ; 2(9): 577-583, 2022 Sep.
Article en En | MEDLINE | ID: mdl-38177468
ABSTRACT
We introduce HUNTRESS, a computational method for mutational intratumor heterogeneity inference from noisy genotype matrices derived from single-cell sequencing data, the running time of which is linear with the number of cells and quadratic with the number of mutations. We prove that, under reasonable conditions, HUNTRESS computes the true progression history of a tumor with high probability. On simulated and real tumor sequencing data, HUNTRESS is demonstrated to be faster than available alternatives with comparable or better accuracy. Additionally, the progression histories of tumors inferred by HUNTRESS on real single-cell sequencing datasets agree with the best known evolution scenarios for the associated tumors.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias Límite: Humans Idioma: En Revista: Nat Comput Sci Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias Límite: Humans Idioma: En Revista: Nat Comput Sci Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos