Your browser doesn't support javascript.
loading
Dicationic Acridinium/Carbene Hybrids as Strongly Oxidizing Photocatalysts.
Sau, Samaresh C; Schmitz, Matthias; Burdenski, Chris; Baumert, Marcel; Antoni, Patrick W; Kerzig, Christoph; Hansmann, Max M.
Afiliación
  • Sau SC; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany.
  • Schmitz M; Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany.
  • Burdenski C; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany.
  • Baumert M; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany.
  • Antoni PW; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany.
  • Kerzig C; Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany.
  • Hansmann MM; Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany.
J Am Chem Soc ; 146(5): 3416-3426, 2024 Feb 07.
Article en En | MEDLINE | ID: mdl-38266168
ABSTRACT
A new design concept for organic, strongly oxidizing photocatalysts is described based upon dicationic acridinium/carbene hybrids. A highly modular synthesis of such hybrids is presented, and the dications are utilized as novel, tailor-made photoredox catalysts in the direct oxidative C-N coupling. Under optimized conditions, benzene and even electron-deficient arenes can be oxidized and coupled with a range of N-heterocycles in high to excellent yields with a single low-energy photon per catalytic turnover, while commonly used acridinium photocatalysts are not able to perform the challenging oxidation step. In contrast to traditional photocatalysts, the hybrid photocatalysts reported here feature a reversible two-electron redox system with regular or inverted redox potentials for the two-electron transfer. The different oxidation states could be isolated and structurally characterized supported by NMR, EPR, and X-ray analysis. Mechanistic experiments employing time-resolved emission and transient absorption spectroscopy unambiguously reveal the outstanding excited-state potential of our best-performing catalyst (+2.5 V vs SCE), and they provide evidence for mechanistic key steps and intermediates.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: Alemania