Your browser doesn't support javascript.
loading
Locating Loneliness Through Social Intelligence Analysis.
Ali Shah, Hurmat; Househ, Mowafa.
Afiliación
  • Ali Shah H; College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
  • Househ M; College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
Stud Health Technol Inform ; 310: 594-598, 2024 Jan 25.
Article en En | MEDLINE | ID: mdl-38269878
ABSTRACT
Loneliness is a global public health issue, but the dynamics of loneliness are not understood. Through a global loneliness map, we plan to understand the dynamics of loneliness better by analyzing social media data on loneliness through social intelligence analysis. In this paper, we present the first proof of concept of the global loneliness map. Data on loneliness using keywords associated with loneliness was collected from the USA and analyzed to find meaningful associations of themes with loneliness. The NLP tool used for sentiment analysis of the tweets is a valence aware dictionary for sentiment reasoning (VADER). The tweets with negative sentiment were further analyzed for psychosocial linguistic features to find meaningful correlation between loneliness and socioeconomic and emotional themes and factors. Loneliness is subjective, hence social intelligence analysis through social media and machine learning tools can help us better understand loneliness.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Emociones / Soledad Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Qatar

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Emociones / Soledad Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Qatar