Your browser doesn't support javascript.
loading
Anaerobic Soil Disinfestation and Vermicompost to Manage Bottom Rot in Organic Lettuce.
Neher, Deborah A; Brown, Anna R; Andrews, Tucker D; Weicht, Thomas R.
Afiliación
  • Neher DA; Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405.
  • Brown AR; Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405.
  • Andrews TD; Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405.
  • Weicht TR; Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405.
Plant Dis ; 108(6): 1833-1841, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38277652
ABSTRACT
Rhizoctonia solani Kühn (teleomorph Thanatephorus cucumeris [Frank] Donk) is an aggressive soilborne pathogen with a wide host range that survives saprophytically between crops, presenting a challenge for organic vegetable farmers who lack effective management tools. A 2-year field experiment was conducted at two organic farms to compare anaerobic soil disinfestation (ASD) and worm-cured compost (vermicompost) to manage bottom rot caused by R. solani subspecies AG1-IB in field-grown organic lettuce (Lactuca sativa). At each farm, four replicate plots of seven treatments were arranged in a randomized complete block design. Randomization was restricted by grouping treatments to evaluate ASD, and treatments to evaluate vermicompost in starter plugs. ASD experiment treatments were three different ASD carbon sources that are commonly used and widely available to local farmers in Vermont compost, cover crop residues, and poultry manure fertilizer, as well as a tarped control. Vermicompost experimental treatments were vermicompost compared with two types of controls a commercial biocontrol product (RootShield PLUS + G), and unamended (untarped control). This study demonstrated that the ASD method is achievable in a field setting on Vermont farms. However, neither ASD nor vermicompost produced significant disease suppression or resulted in higher marketable yields than standard growing practices. Given the laborious nature of ASD, it is likely more appropriate in a greenhouse setting with high-value crops that could especially benefit from being grown in plastic tarped beds (e.g., tomatoes and strawberries). This study is the first known attempt of field-implemented ASD for soil pathogen control in the northeastern United States.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades de las Plantas / Rhizoctonia / Suelo / Compostaje / Lactuca Tipo de estudio: Clinical_trials Idioma: En Revista: Plant Dis Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedades de las Plantas / Rhizoctonia / Suelo / Compostaje / Lactuca Tipo de estudio: Clinical_trials Idioma: En Revista: Plant Dis Año: 2024 Tipo del documento: Article