Your browser doesn't support javascript.
loading
Feasibility study of a SiPM-fiber detector for non-invasive measurement of arterial input function for preclinical and clinical positron emission tomography.
de Scals, Sara; Fraile, Luis Mario; Udías, José Manuel; Martínez Cortés, Laura; Oteo, Marta; Morcillo, Miguel Ángel; Carreras-Delgado, José Luis; Cabrera-Martín, María Nieves; España, Samuel.
Afiliación
  • de Scals S; Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain.
  • Fraile LM; Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
  • Udías JM; Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain.
  • Martínez Cortés L; Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
  • Oteo M; Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain.
  • Morcillo MÁ; Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
  • Carreras-Delgado JL; Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
  • Cabrera-Martín MN; Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
  • España S; Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
EJNMMI Phys ; 11(1): 12, 2024 Jan 31.
Article en En | MEDLINE | ID: mdl-38291187
ABSTRACT
Pharmacokinetic positron emission tomography (PET) studies rely on the measurement of the arterial input function (AIF), which represents the time-activity curve of the radiotracer concentration in the blood plasma. Traditionally, obtaining the AIF requires invasive procedures, such as arterial catheterization, which can be challenging, time-consuming, and associated with potential risks. Therefore, the development of non-invasive techniques for AIF measurement is highly desirable. This study presents a detector for the non-invasive measurement of the AIF in PET studies. The detector is based on the combination of scintillation fibers and silicon photomultipliers (SiPMs) which leads to a very compact and rugged device. The feasibility of the detector was assessed through Monte Carlo simulations conducted on mouse tail and human wrist anatomies studying relevant parameters such as energy spectrum, detector efficiency and minimum detectable activity (MDA). The simulations involved the use of 18F and 68Ga isotopes, which exhibit significantly different positron ranges. In addition, several prototypes were built in order to study the different components of the detector including the scintillation fiber, the coating of the fiber, the SiPMs, and the operating configuration. Finally, the simulations were compared with experimental measurements conducted using a tube filled with both 18F and 68Ga to validate the obtained results. The MDA achieved for both anatomies (approximately 1000 kBq/mL for mice and 1 kBq/mL for humans) falls below the peak radiotracer concentrations typically found in PET studies, affirming the feasibility of conducting non-invasive AIF measurements with the fiber detector. The sensitivity for measurements with a tube filled with 18F (68Ga) was 1.2 (2.07) cps/(kBq/mL), while for simulations, it was 2.81 (6.23) cps/(kBq/mL). Further studies are needed to validate these results in pharmacokinetic PET studies.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: EJNMMI Phys Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: EJNMMI Phys Año: 2024 Tipo del documento: Article País de afiliación: España