Your browser doesn't support javascript.
loading
Towards generalizable food source identification: An explainable deep learning approach to rice authentication employing stable isotope and elemental marker analysis.
Chu, Yinghao; Wu, Jiajie; Yan, Zhi; Zhao, Zizhou; Xu, Dunming; Wu, Hao.
Afiliación
  • Chu Y; Department of Advanced Design and Systems Engineering, City University of Hong Kong, Hong Kong Special Administrative Region.
  • Wu J; Faculty of Engineering, The University of Sydney, NSW 2006, Australia.
  • Yan Z; Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518033, China.
  • Zhao Z; Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
  • Xu D; Technical Center, Xiamen Customs, Xiamen 361026, China.
  • Wu H; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China. Electronic address: haowu@xmu.edu.cn.
Food Res Int ; 179: 113967, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38342523
ABSTRACT
In addressing the generalization issue faced by data-driven methods in food origin traceability, especially when encountering diverse input variable sets, such as elemental contents (C, N, S), stable isotopes (C, N, S, H and O) and 43 elements measured under varying laboratory conditions. We introduce an innovative, versatile deep learning-based framework incorporating explainable analysis, adept at determining feature importance through learned neuron weights. Our proposed framework, validated using three rice sample batches from four Asian countries, totaling 354 instances, exhibited exceptional identification accuracy of up to 97%, surpassing traditional reference methods like decision tree and support vector machine. The adaptable methodological system accommodates various combinations of traceability indicators, facilitating seamless replication and extensive applicability. This groundbreaking solution effectively tackles generalization challenges arising from disparate variable sets across distinct data batches, paving the way for enhanced food origin traceability in real-world applications.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oryza / Oligoelementos / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies País/Región como asunto: Asia Idioma: En Revista: Food Res Int Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oryza / Oligoelementos / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies País/Región como asunto: Asia Idioma: En Revista: Food Res Int Año: 2024 Tipo del documento: Article