Your browser doesn't support javascript.
loading
Astaxanthin Inhibits H2O2-Induced Excessive Mitophagy and Apoptosis in SH-SY5Y Cells by Regulation of Akt/mTOR Activation.
Yan, Tingting; Ding, Feng; Zhang, Yiting; Wang, Yalin; Wang, Yinuo; Zhang, Yuanqingzhi; Zhu, Feiyu; Zhang, Guanghan; Zheng, Xinyi; Jia, Guangyin; Zhou, Feng; Zhao, Yu; Zhao, Yan.
Afiliación
  • Yan T; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Ding F; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Zhang Y; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Wang Y; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Wang Y; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Zhang Y; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Zhu F; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Zhang G; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Zheng X; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Jia G; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Zhou F; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Zhao Y; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
  • Zhao Y; Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China.
Mar Drugs ; 22(2)2024 Jan 24.
Article en En | MEDLINE | ID: mdl-38393028
ABSTRACT
Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas c-akt / Neuroblastoma Límite: Humans Idioma: En Revista: Mar Drugs Asunto de la revista: BIOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Proto-Oncogénicas c-akt / Neuroblastoma Límite: Humans Idioma: En Revista: Mar Drugs Asunto de la revista: BIOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China