Your browser doesn't support javascript.
loading
Alteration of chromosome structure impacts gene expressions implicated in pancreatic ductal adenocarcinoma cells.
Han, Wenrui; Shi, Detong; Yang, Qiu; Li, Xinxin; Zhang, Jian; Peng, Cheng; Yan, Fang.
Afiliación
  • Han W; Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China.
  • Shi D; Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China.
  • Yang Q; Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China.
  • Li X; Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China.
  • Zhang J; Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China.
  • Peng C; Southeast United Graduate School, 650500, Kunming, China.
  • Yan F; Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio- resources in Yunnan, Yunnan University, 650500, Kunming, China. chengpeng@ynu.edu.cn.
BMC Genomics ; 25(1): 206, 2024 Feb 23.
Article en En | MEDLINE | ID: mdl-38395755
ABSTRACT

BACKGROUND:

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a five-year survival rate of approximately 10%. Genetic mutations are pivotal drivers in PDAC pathogenesis, but recent investigations also revealed the involvement of non-genetic alterations in the disease development. In this study, we undertook a multi-omics approach, encompassing ATAC-seq, RNA-seq, ChIP-seq, and Hi-C methodologies, to dissect gene expression alterations arising from changes in chromosome accessibility and chromatin three-dimensional interactions in PDAC.

RESULTS:

Our findings indicate that chromosomal structural alterations can lead to abnormal expressions on key genes during PDAC development. Notably, overexpression of oncogenes FGFR2, FOXA2, CYP2R1, and CPOX can be attributed to the augmentation of promoter accessibility, coupled with long-range interactions with distal elements. Additionally, our findings indicate that chromosomal structural alterations caused by genomic instability can lead to abnormal expressions in PDACs. As an example, by analyzing chromosomal changes, we identified a putative oncogenic gene, LPAR1, which shows upregulated expression in both PDAC cell lines and clinical samples. The overexpression is correlated with alterations in LPAR1-associated 3D genome structure and chromatin state. We further demonstrated that high LPAR1 activity is required for enhanced PDAC cell migration in vitro.

CONCLUSIONS:

Collectively, our findings reveal that the chromosomal conformational alterations, in addition to the well-known genetic mutations, are critical for PDAC tumorigenesis.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Carcinoma Ductal Pancreático Límite: Humans Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Carcinoma Ductal Pancreático Límite: Humans Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2024 Tipo del documento: Article País de afiliación: China