Your browser doesn't support javascript.
loading
Development and Evaluation of a Quantitative Systems Pharmacology Model for Mechanism Interpretation and Efficacy Prediction of Atezolizumab in Combination with Carboplatin and Nab-Paclitaxel in Patients with Non-Small-Cell Lung Cancer.
Wang, Chen-Yu; Dai, Hao-Ran; Tan, Yu-Ping; Yang, Di-Hong; Niu, Xiao-Min; Han, Lu; Wang, Wen; Ma, Ling-Ling; Julku, Aleksi; Jiao, Zheng.
Afiliación
  • Wang CY; Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
  • Dai HR; Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
  • Tan YP; Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
  • Yang DH; Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
  • Niu XM; Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
  • Han L; Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
  • Wang W; Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
  • Ma LL; Puissan Biotech Oy, 00510 Helsinki, Finland.
  • Julku A; Puissan Biotech Oy, 00510 Helsinki, Finland.
  • Jiao Z; Puissan Biotech Oy, 00510 Helsinki, Finland.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 12.
Article en En | MEDLINE | ID: mdl-38399453
ABSTRACT
Immunotherapy has shown clinical benefit in patients with non-small-cell lung cancer (NSCLC). Due to the limited response of monotherapy, combining immune checkpoint inhibitors (ICIs) and chemotherapy is considered a treatment option for advanced NSCLC. However, the mechanism of combined therapy and the potential patient population that could benefit from combined therapy remain undetermined. Here, we developed an NSCLC model based on the published quantitative systems pharmacology (QSP)-immuno-oncology platform by making necessary adjustments. After calibration and validation, the established QSP model could adequately characterise the biological mechanisms of action of the triple combination of atezolizumab, nab-paclitaxel, and carboplatin in patients with NSCLC, and identify predictive biomarkers for precision dosing. The established model could efficiently characterise the objective response rate and duration of response of the IMpower131 trial, reproducing the efficacy of alternative dosing. Furthermore, CD8+ and CD4+ T cell densities in tumours were found to be significantly related to the response status. This significant extension of the QSP model not only broadens its applicability but also more accurately reflects real-world clinical settings. Importantly, it positions the model as a critical foundation for model-informed drug development and the customisation of treatment plans, especially in the context of combining single-agent ICIs with platinum-doublet chemotherapy.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Pharmaceuticals (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Pharmaceuticals (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China