Your browser doesn't support javascript.
loading
Exploring biased activation characteristics by molecular dynamics simulation and machine learning for the µ-opioid receptor.
Chen, Jianfang; Gou, Qiaoling; Chen, Xin; Song, Yuanpeng; Zhang, Fuhui; Pu, Xuemei.
Afiliación
  • Chen J; College of Chemistry, Sichuan University, Chengdu 610064, China. xmpuscu@scu.edu.cn.
  • Gou Q; College of Chemistry, Sichuan University, Chengdu 610064, China. xmpuscu@scu.edu.cn.
  • Chen X; College of Chemistry, Sichuan University, Chengdu 610064, China. xmpuscu@scu.edu.cn.
  • Song Y; College of Chemistry, Sichuan University, Chengdu 610064, China. xmpuscu@scu.edu.cn.
  • Zhang F; Graduate School, Sichuan University, Chengdu 610064, China.
  • Pu X; College of Chemistry, Sichuan University, Chengdu 610064, China. xmpuscu@scu.edu.cn.
Phys Chem Chem Phys ; 26(14): 10698-10710, 2024 Apr 03.
Article en En | MEDLINE | ID: mdl-38512140
ABSTRACT
Biased ligands selectively activating specific downstream signaling pathways (termed as biased activation) exhibit significant therapeutic potential. However, the conformational characteristics revealed are very limited for the biased activation, which is not conducive to biased drug development. Motivated by the issue, we combine extensive accelerated molecular dynamics simulations and an interpretable deep learning model to probe the biased activation features for two complex systems constructed by the inactive µOR and two different biased agonists (G-protein-biased agonist TRV130 and ß-arrestin-biased agonist endomorphin2). The results indicate that TRV130 binds deeper into the receptor core compared to endomorphin2, located between W2936.48 and D1142.50, and forms hydrogen bonding with D1142.50, while endomorphin2 binds above W2936.48. The G protein-biased agonist induces greater outward movements of the TM6 intracellular end, forming a typical active conformation, while the ß-arrestin-biased agonist leads to a smaller extent of outward movements of TM6. Compared with TRV130, endomorphin2 causes more pronounced inward movements of the TM7 intracellular end and more complex conformational changes of H8 and ICL1. In addition, important residues determining the two different biased activation states were further identified by using an interpretable deep learning classification model, including some common biased activation residues across Class A GPCRs like some key residues on the TM2 extracellular end, ECL2, TM5 intracellular end, TM6 intracellular end, and TM7 intracellular end, and some specific important residues of ICL3 for µOR. The observations will provide valuable information for understanding the biased activation mechanism for GPCRs.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Compuestos de Espiro / Tiofenos / Simulación de Dinámica Molecular Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Compuestos de Espiro / Tiofenos / Simulación de Dinámica Molecular Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China