Your browser doesn't support javascript.
loading
Difluoroboron Complexes Based on Benzimidazole-Phenolates as Blue Emitters.
Alvarez-Quesada, Anderson; Báez, José E; Jiménez-Halla, J Oscar C; Ramos-Ortiz, Gabriel; González-García, Gerardo.
Afiliación
  • Alvarez-Quesada A; Departamento de Química, Universidad de Guanajuato, Colonia Noria Alta S/N, C.P. 36050 Guanajuato, Guanajuato, Mexico.
  • Báez JE; Departamento de Química, Universidad de Guanajuato, Colonia Noria Alta S/N, C.P. 36050 Guanajuato, Guanajuato, Mexico.
  • Jiménez-Halla JOC; Departamento de Química, Universidad de Guanajuato, Colonia Noria Alta S/N, C.P. 36050 Guanajuato, Guanajuato, Mexico.
  • Ramos-Ortiz G; Centro de Investigaciones en Óptica A.C., Loma del Bosque No. 115, Col. Lomas del Campestre, C.P. 37150 León, Guanajuato, Mexico.
  • González-García G; Departamento de Química, Universidad de Guanajuato, Colonia Noria Alta S/N, C.P. 36050 Guanajuato, Guanajuato, Mexico.
Inorg Chem ; 63(15): 6649-6659, 2024 Apr 15.
Article en En | MEDLINE | ID: mdl-38572737
ABSTRACT
Novel four-coordinated boron complexes (1-5) were synthesized via a reaction between BF3·CH3OH and benzimidazole-phenolate ligands (L1-L5), which are N,O-donors. These complexes exhibit intense blue emission in the solution and solid states accompanied by notable fluorescence quantum yields (ΦF). The study of the structure-property relation, through theoretical and experimental approaches, revealed a distinctive trend where compounds incorporating electron-donating substituents (methyl and ethoxy groups) in the phenolate moiety manifest shifts in emission wavelengths across the blue spectrum, concomitant with an increase in ΦF. Furthermore, the incorporation of an aromatic ring into the benzimidazole moiety considerably intensifies the rate of radiative relaxation from excited states. Notably, in the solid phase, either as a crystalline powder or loaded into polymer films, these modified complexes maintain or even surpass ΦF values observed in molecular solutions, ranging from 0.18 to 0.57, depending on the substitution. This characteristic makes these compounds attractive for applications in optoelectronics. All of the compounds were characterized using 1H, 13C, 11B, and 19F NMR, elemental analysis, and the molecular structures were corroborated through single-crystal X-ray diffraction analysis. Computational calculations via time-dependent density functional theory further elucidate the tunability of optical bandgaps through group substitution on ligands, aligning well with experimental observations.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article País de afiliación: México

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article País de afiliación: México