Your browser doesn't support javascript.
loading
Interaction between fatty acid oxidation and ethanol metabolism in liver.
Lu, Yongke; George, Joseph.
Afiliación
  • Lu Y; Department of Biomedical Sciences, Joan C. Edwards College of Medicine, Marshall University, Huntington, West Virginia, United States.
  • George J; Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G483-G494, 2024 May 01.
Article en En | MEDLINE | ID: mdl-38573193
ABSTRACT
Fatty acid oxidation (FAO) releases the energy stored in fat to maintain basic biological processes. Dehydrogenation is a major way to oxidize fatty acids, which needs NAD+ to accept the released H+ from fatty acids and form NADH, which increases the ratio of NADH/NAD+ and consequently inhibits FAO leading to the deposition of fat in the liver, which is termed fatty liver or steatosis. Consumption of alcohol (ethanol) initiates simple steatosis that progresses to alcoholic steatohepatitis, which constitutes a spectrum of liver disorders called alcohol-associated liver disease (ALD). ALD is linked to ethanol metabolism. Ethanol is metabolized by alcohol dehydrogenase (ADH), microsomal ethanol oxidation system (MEOS), mainly cytochrome P450 2E1 (CYP2E1), and catalase. ADH also requires NAD+ to accept the released H+ from ethanol. Thus, ethanol metabolism by ADH leads to increased ratio of NADH/NAD+, which inhibits FAO and induces steatosis. CYP2E1 directly consumes reducing equivalent NADPH to oxidize ethanol, which generates reactive oxygen species (ROS) that lead to cellular injury. Catalase is mainly present in peroxisomes, where very long-chain fatty acids and branched-chain fatty acids are oxidized, and the resultant short-chain fatty acids will be further oxidized in mitochondria. Peroxisomal FAO generates hydrogen peroxide (H2O2), which is locally decomposed by catalase. When ethanol is present, catalase uses H2O2 to oxidize ethanol. In this review, we introduce FAO (including α-, ß-, and ω-oxidation) and ethanol metabolism (by ADH, CYP2E1, and catalase) followed by the interaction between FAO and ethanol metabolism in the liver and its pathophysiological significance.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Hígado Graso / Hepatopatías Alcohólicas Límite: Humans Idioma: En Revista: Am J Physiol Gastrointest Liver Physiol Asunto de la revista: FISIOLOGIA / GASTROENTEROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Hígado Graso / Hepatopatías Alcohólicas Límite: Humans Idioma: En Revista: Am J Physiol Gastrointest Liver Physiol Asunto de la revista: FISIOLOGIA / GASTROENTEROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos