C-H Bond Oxidation by MnIV-Oxo Complexes: Hydrogen-Atom Tunneling and Multistate Reactivity.
Inorg Chem
; 63(17): 7754-7769, 2024 Apr 29.
Article
en En
| MEDLINE
| ID: mdl-38625043
ABSTRACT
The reactivity of six MnIV-oxo complexes in C-H bond oxidation has been examined using a combination of kinetic experiments and computational methods. Variable-temperature studies of the oxidation of 9,10-dihydroanthracene (DHA) and ethylbenzene by these MnIV-oxo complexes yielded activation parameters suitable for evaluating electronic structure computations. Complementary kinetic experiments of the oxidation of deuterated DHA provided evidence for hydrogen-atom tunneling in C-H bond oxidation for all MnIV-oxo complexes. These results are in accordance with the Bell model, where tunneling occurs near the top of the transition-state barrier. Density functional theory (DFT) and DLPNO-CCSD(T1) computations were performed for three of the six MnIV-oxo complexes to probe a previously predicted multistate reactivity model. The DFT computations predicted a thermal crossing from the 4B1 ground state to a 4E state along the C-H bond oxidation reaction coordinate. DLPNO-CCSD(T1) calculations further confirm that the 4E transition state offers a lower energy barrier, reinforcing the multistate reactivity model for these complexes. We discuss how this multistate model can be reconciled with recent computations that revealed that the kinetics of C-H bond oxidation by this set of MnIV-oxo complexes can be well-predicted on the basis of the thermodynamic driving force for these reactions.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos