Your browser doesn't support javascript.
loading
Identification of hyperthermophilic D-allulose 3-epimerase from Thermotoga sp. and its application as a high-performance biocatalyst for D-allulose synthesis.
Shen, Ji-Dong; Xu, Bao-Ping; Yu, Te-Li; Fei, Yong-Xiang; Cai, Xue; Huang, Liang-Gang; Jin, Li-Qun; Liu, Zhi-Qiang; Zheng, Yu-Guo.
Afiliación
  • Shen JD; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
  • Xu BP; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
  • Yu TL; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
  • Fei YX; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
  • Cai X; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
  • Huang LG; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
  • Jin LQ; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
  • Liu ZQ; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China. microliu@zjut.edu.cn.
  • Zheng YG; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
Bioprocess Biosyst Eng ; 47(6): 841-850, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38676737
ABSTRACT
D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 ℃) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Thermotoga Idioma: En Revista: Bioprocess Biosyst Eng Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Thermotoga Idioma: En Revista: Bioprocess Biosyst Eng Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China