Your browser doesn't support javascript.
loading
CAVE: Cerebral artery-vein segmentation in digital subtraction angiography.
Su, Ruisheng; van der Sluijs, P Matthijs; Chen, Yuan; Cornelissen, Sandra; van den Broek, Ruben; van Zwam, Wim H; van der Lugt, Aad; Niessen, Wiro J; Ruijters, Danny; van Walsum, Theo.
Afiliación
  • Su R; Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands. Electronic address: r.su@erasmusmc.nl.
  • van der Sluijs PM; Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
  • Chen Y; Department of Radiology & Nuclear Medicine, UMass Chan Medical School, Worcester, USA.
  • Cornelissen S; Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
  • van den Broek R; Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
  • van Zwam WH; Department of Radiology & Nuclear Medicine, Maastricht UMC, Cardiovascular Research Institute Maastricht, The Netherlands.
  • van der Lugt A; Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
  • Niessen WJ; Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Imaging Physics, Applied Sciences, Delft University of Technology, The Netherlands.
  • Ruijters D; Philips Healthcare, Best, The Netherlands.
  • van Walsum T; Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
Comput Med Imaging Graph ; 115: 102392, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38714020
ABSTRACT
Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https//github.com/RuishengSu/CAVE_DSA.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Venas Cerebrales / Angiografía de Substracción Digital / Arterias Cerebrales Límite: Humans Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Venas Cerebrales / Angiografía de Substracción Digital / Arterias Cerebrales Límite: Humans Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article