Your browser doesn't support javascript.
loading
A three-dimensional, discrete-continuum model of blood pressure in microvascular networks.
Sweeney, Paul W; Walsh, Claire; Walker-Samuel, Simon; Shipley, Rebecca J.
Afiliación
  • Sweeney PW; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
  • Walsh C; Department of Mechanical Engineering, University College London, London, UK.
  • Walker-Samuel S; Department of Mechanical Engineering, University College London, London, UK.
  • Shipley RJ; Centre for Computational Medicine, University College London, London, UK.
Int J Numer Method Biomed Eng ; : e3832, 2024 May 21.
Article en En | MEDLINE | ID: mdl-38770788
ABSTRACT
We present a 3D discrete-continuum model to simulate blood pressure in large microvascular tissues in the absence of known capillary network architecture. Our hybrid approach combines a 1D Poiseuille flow description for large, discrete arteriolar and venular networks coupled to a continuum-based Darcy model, point sources of flux, for transport in the capillary bed. We evaluate our hybrid approach using a vascular network imaged from the mouse brain medulla/pons using multi-fluorescence high-resolution episcopic microscopy (MF-HREM). We use the fully-resolved vascular network to predict the hydraulic conductivity of the capillary network and generate a fully-discrete pressure solution to benchmark against. Our results demonstrate that the discrete-continuum methodology is a computationally feasible and effective tool for predicting blood pressure in real-world microvascular tissues when capillary microvessels are poorly defined.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Int J Numer Method Biomed Eng Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Int J Numer Method Biomed Eng Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido