Your browser doesn't support javascript.
loading
Phosphate deficiency increases plant susceptibility to Botrytis cinerea infection by inducing the abscisic acid pathway.
Jaskolowski, Aime; Poirier, Yves.
Afiliación
  • Jaskolowski A; Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
  • Poirier Y; Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
Plant J ; 2024 May 28.
Article en En | MEDLINE | ID: mdl-38804074
ABSTRACT
Plants have evolved finely regulated defense systems to counter biotic and abiotic threats. In the natural environment, plants are typically challenged by simultaneous stresses and, amid such conditions, crosstalk between the activated signaling pathways becomes evident, ultimately altering the outcome of the defense response. As an example of combined biotic and abiotic stresses, inorganic phosphate (Pi) deficiency, common in natural and agricultural environments, can occur along with attack by the fungus Botrytis cinerea, a devastating necrotrophic generalist pathogen responsible for massive crop losses. We report that Pi deficiency in Arabidopsis thaliana increases its susceptibility to infection by B. cinerea by influencing the early stages of pathogen infection, namely spore adhesion and germination on the leaf surface. Remarkably, Pi-deficient plants are more susceptible to B. cinerea despite displaying the appropriate activation of the jasmonic acid and ethylene signaling pathways, as well as producing secondary defense metabolites and reactive oxygen species. Conversely, the callose deposition in response to B. cinerea infection is compromised under Pi-deficient conditions. The levels of abscisic acid (ABA) are increased in Pi-deficient plants, and the heightened susceptibility to B. cinerea observed under Pi deficiency can be reverted by blocking ABA biosynthesis. Furthermore, high level of leaf ABA induced by overexpression of NCED6 in Pi-sufficient plants also resulted in greater susceptibility to B. cinerea infection associated with increased spore adhesion and germination, and reduced callose deposition. Our findings reveal a link between the enhanced accumulation of ABA induced by Pi deficiency and an increased sensitivity to B. cinerea infection.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza