A graph-theoretic approach to ring analysis: Dominant metric dimensions in zero-divisor graphs.
Heliyon
; 10(10): e30989, 2024 May 30.
Article
en En
| MEDLINE
| ID: mdl-38813199
ABSTRACT
This article investigates the concept of dominant metric dimensions in zero divisor graphs (ZD-graphs) associated with rings. Consider a finite commutative ring with unity, denoted as R, where nonzero elements x and y are identified as zero divisors if their product results in zero (x.y=0). The set of zero divisors in ring R is referred to as L(R). To analyze various algebraic properties of R, a graph known as the zero-divisor graph is constructed using L(R). This manuscript establishes specific general bounds for the dominant metric dimension (Ddim) concerning the ZD-graph of R. To achieve this objective, we examine the zero divisor graphs for specific rings, such as the ring of Gaussian integers modulo m, denoted as Zm[i], the ring of integers modulo n, denoted as Zn, and some quotient polynomial rings. Our research unveils new insights into the structural similarities and differences among commutative rings sharing identical metric dimensions and dominant metric dimensions. Additionally, we present a general result outlining bounds for the dominant metric dimension expressed in terms of the maximum degree, girth, clique number, and diameter of the associated ZD-graphs. Through this exploration, we aim to provide a comprehensive framework for analyzing commutative rings and their associated zero divisor graphs, thereby advancing both theoretical knowledge and practical applications in diverse domains.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Heliyon
Año:
2024
Tipo del documento:
Article
País de afiliación:
Pakistán