Your browser doesn't support javascript.
loading
A three-dimensionally architected electronic skin mimicking human mechanosensation.
Liu, Zhi; Hu, Xiaonan; Bo, Renheng; Yang, Youzhou; Cheng, Xu; Pang, Wenbo; Liu, Qing; Wang, Yuejiao; Wang, Shuheng; Xu, Shiwei; Shen, Zhangming; Zhang, Yihui.
Afiliación
  • Liu Z; Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
  • Hu X; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China.
  • Bo R; Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
  • Yang Y; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China.
  • Cheng X; Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
  • Pang W; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China.
  • Liu Q; Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
  • Wang Y; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China.
  • Wang S; Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
  • Xu S; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China.
  • Shen Z; Department of Materials Science and Engineering, National University of Singapore, Singapore 119276, Singapore.
  • Zhang Y; Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 119276, Singapore.
Science ; 384(6699): 987-994, 2024 May 31.
Article en En | MEDLINE | ID: mdl-38815009
ABSTRACT
Human skin sensing of mechanical stimuli originates from transduction of mechanoreceptors that converts external forces into electrical signals. Although imitating the spatial distribution of those mechanoreceptors can enable developments of electronic skins capable of decoupled sensing of normal/shear forces and strains, it remains elusive. We report a three-dimensionally (3D) architected electronic skin (denoted as 3DAE-Skin) with force and strain sensing components arranged in a 3D layout that mimics that of Merkel cells and Ruffini endings in human skin. This 3DAE-Skin shows excellent decoupled sensing performances of normal force, shear force, and strain and enables development of a tactile system for simultaneous modulus/curvature measurements of an object through touch. Demonstrations include rapid modulus measurements of fruits, bread, and cake with various shapes and degrees of freshness.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tacto / Piel Artificial / Dispositivos Electrónicos Vestibles / Mecanorreceptores Límite: Humans Idioma: En Revista: Science Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tacto / Piel Artificial / Dispositivos Electrónicos Vestibles / Mecanorreceptores Límite: Humans Idioma: En Revista: Science Año: 2024 Tipo del documento: Article