Your browser doesn't support javascript.
loading
Compact and cost-effective laser-powered speckle contrast optical spectroscopy fiber-free device for measuring cerebral blood flow.
Huang, Yu Xi; Mahler, Simon; Dickson, Maya; Abedi, Aidin; Tyszka, Julian Michael; Lo, Yu Tung; Russin, Jonathan; Liu, Charles; Yang, Changhuei.
Afiliación
  • Huang YX; California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States.
  • Mahler S; California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States.
  • Dickson M; California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States.
  • Abedi A; University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States.
  • Tyszka JM; California Institute of Technology, Division of Humanities and Social Sciences, Pasadena, California, United States.
  • Lo YT; University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States.
  • Russin J; University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States.
  • Liu C; Rancho Los Amigos National Rehabilitation Center, Downey, California, United States.
  • Yang C; University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States.
J Biomed Opt ; 29(6): 067001, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38826808
ABSTRACT

Significance:

In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain.

Aim:

Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution.

Approach:

The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz.

Results:

Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head.

Conclusions:

Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Análisis Espectral / Circulación Cerebrovascular / Diseño de Equipo Límite: Humans Idioma: En Revista: J Biomed Opt Asunto de la revista: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Análisis Espectral / Circulación Cerebrovascular / Diseño de Equipo Límite: Humans Idioma: En Revista: J Biomed Opt Asunto de la revista: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos