Your browser doesn't support javascript.
loading
Data-driven learning of structure augments quantitative prediction of biological responses.
Ha, Yuanchi; Ma, Helena R; Wu, Feilun; Weiss, Andrea; Duncker, Katherine; Xu, Helen Z; Lu, Jia; Golovsky, Max; Reker, Daniel; You, Lingchong.
Afiliación
  • Ha Y; Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America.
  • Ma HR; Center for Quantitative Biodesign, Duke University, Durham, North Carolina, United States of America.
  • Wu F; Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America.
  • Weiss A; Center for Quantitative Biodesign, Duke University, Durham, North Carolina, United States of America.
  • Duncker K; Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America.
  • Xu HZ; Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America.
  • Lu J; Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America.
  • Golovsky M; Center for Quantitative Biodesign, Duke University, Durham, North Carolina, United States of America.
  • Reker D; Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America.
  • You L; Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America.
PLoS Comput Biol ; 20(6): e1012185, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38829926
ABSTRACT
Multi-factor screenings are commonly used in diverse applications in medicine and bioengineering, including optimizing combination drug treatments and microbiome engineering. Despite the advances in high-throughput technologies, large-scale experiments typically remain prohibitively expensive. Here we introduce a machine learning platform, structure-augmented regression (SAR), that exploits the intrinsic structure of each biological system to learn a high-accuracy model with minimal data requirement. Under different environmental perturbations, each biological system exhibits a unique, structured phenotypic response. This structure can be learned based on limited data and once learned, can constrain subsequent quantitative predictions. We demonstrate that SAR requires significantly fewer data comparing to other existing machine-learning methods to achieve a high prediction accuracy, first on simulated data, then on experimental data of various systems and input dimensions. We then show how a learned structure can guide effective design of new experiments. Our approach has implications for predictive control of biological systems and an integration of machine learning prediction and experimental design.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Análisis de Regresión / Aprendizaje Automático / Modelos Biológicos Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Análisis de Regresión / Aprendizaje Automático / Modelos Biológicos Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos