Your browser doesn't support javascript.
loading
Despite plasticity, heatwaves are costly for a coral reef fish.
Van Wert, Jacey C; Birnie-Gauvin, Kim; Gallagher, Jordan; Hardison, Emily A; Landfield, Kaitlyn; Burkepile, Deron E; Eliason, Erika J.
Afiliación
  • Van Wert JC; Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA. jcvanwert@gmail.com.
  • Birnie-Gauvin K; Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
  • Gallagher J; Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark.
  • Hardison EA; Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
  • Landfield K; Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
  • Burkepile DE; Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
  • Eliason EJ; Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
Sci Rep ; 14(1): 13320, 2024 06 10.
Article en En | MEDLINE | ID: mdl-38858427
ABSTRACT
Climate change is intensifying extreme weather events, including marine heatwaves, which are prolonged periods of anomalously high sea surface temperature that pose a novel threat to aquatic animals. Tropical animals may be especially vulnerable to marine heatwaves because they are adapted to a narrow temperature range. If these animals cannot acclimate to marine heatwaves, the extreme heat could impair their behavior and fitness. Here, we investigated how marine heatwave conditions affected the performance and thermal tolerance of a tropical predatory fish, arceye hawkfish (Paracirrhites arcatus), across two seasons in Moorea, French Polynesia. We found that the fish's daily activities, including recovery from burst swimming and digestion, were more energetically costly in fish exposed to marine heatwave conditions across both seasons, while their aerobic capacity remained the same. Given their constrained energy budget, these rising costs associated with warming may impact how hawkfish prioritize activities. Additionally, hawkfish that were exposed to hotter temperatures exhibited cardiac plasticity by increasing their maximum heart rate but were still operating within a few degrees of their thermal limits. With more frequent and intense heatwaves, hawkfish, and other tropical fishes must rapidly acclimate, or they may suffer physiological consequences that alter their role in the ecosystem.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Arrecifes de Coral Límite: Animals Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Arrecifes de Coral Límite: Animals Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos