Your browser doesn't support javascript.
loading
Expert-level detection of M-proteins in serum protein electrophoresis using machine learning.
Elfert, Eike; Kaminski, Wolfgang E; Matek, Christian; Hoermann, Gregor; Axelsen, Eyvind W; Marr, Carsten; Piehler, Armin P.
Afiliación
  • Elfert E; Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
  • Kaminski WE; Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
  • Matek C; Ingenium Digital Diagnostics GmbH, Frankfurt, Germany.
  • Hoermann G; Institute of AI for Health, Helmholtz Munich - German Research Center for Environmental Health, Neuherberg, Germany.
  • Axelsen EW; 535021 MLL Munich Leukemia Laboratory , Munich, Germany.
  • Marr C; Fürst Medical Laboratory, Oslo, Norway.
  • Piehler AP; Department of Informatics, University of Oslo, Oslo, Norway.
Clin Chem Lab Med ; 62(12): 2498-2506, 2024 Nov 26.
Article en En | MEDLINE | ID: mdl-38879789
ABSTRACT

OBJECTIVES:

Serum protein electrophoresis (SPE) in combination with immunotyping (IMT) is the diagnostic standard for detecting monoclonal proteins (M-proteins). However, interpretation of SPE and IMT is weakly standardized, time consuming and investigator dependent. Here, we present five machine learning (ML) approaches for automated detection of M-proteins on SPE on an unprecedented large and well-curated data set and compare the performance with that of laboratory experts.

METHODS:

SPE and IMT were performed in serum samples from 69,722 individuals from Norway. IMT results were used to label the samples as M-protein present (positive, n=4,273) or absent (negative n=65,449). Four feature-based ML algorithms and one convolutional neural network (CNN) were trained on 68,722 randomly selected SPE patterns to detect M-proteins. Algorithm performance was compared to that of an expert group of clinical pathologists and laboratory technicians (n=10) on a test set of 1,000 samples.

RESULTS:

The random forest classifier showed the best performance (F1-Score 93.2 %, accuracy 99.1 %, sensitivity 89.9 %, specificity 99.8 %, positive predictive value 96.9 %, negative predictive value 99.3 %) and outperformed the experts (F1-Score 61.2 ± 16.0 %, accuracy 89.2 ± 10.2 %, sensitivity 94.3 ± 2.8 %, specificity 88.9 ± 10.9 %, positive predictive value 47.3 ± 16.2 %, negative predictive value 99.5 ± 0.2 %) on the test set. Interestingly the performance of the RFC saturated, the CNN performance increased steadily within our training set (n=68,722).

CONCLUSIONS:

Feature-based ML systems are capable of automated detection of M-proteins on SPE beyond expert-level and show potential for use in the clinical laboratory.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Electroforesis de las Proteínas Sanguíneas / Aprendizaje Automático Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Clin Chem Lab Med Asunto de la revista: QUIMICA CLINICA / TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Electroforesis de las Proteínas Sanguíneas / Aprendizaje Automático Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Clin Chem Lab Med Asunto de la revista: QUIMICA CLINICA / TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2024 Tipo del documento: Article País de afiliación: Alemania