Your browser doesn't support javascript.
loading
Inflammation-Responsive Mesoporous Silica Nanoparticles with Synergistic Anti-inflammatory and Joint Protection Effects for Rheumatoid Arthritis Treatment.
Wu, Ye-Zhen; Chen, Wen-Yu; Zeng, Ying; Ji, Qi-Lin; Yang, Yue; Guo, Xu-Liang; Wang, Xiu.
Afiliación
  • Wu YZ; The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
  • Chen WY; The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
  • Zeng Y; The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
  • Ji QL; The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
  • Yang Y; The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
  • Guo XL; The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China. 2021001@bbmc.edu.cn.
  • Wang X; The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China. bbwx1016@163.com.
Pharm Res ; 41(7): 1493-1505, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38918308
ABSTRACT

PURPOSE:

Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA.

METHODS:

A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats.

RESULTS:

TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP.

CONCLUSIONS:

These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fenantrenos / Polímeros / Artritis Reumatoide / Dióxido de Silicio / Diterpenos / Nanopartículas / Liberación de Fármacos / Indoles / Antiinflamatorios Idioma: En Revista: Pharm Res Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Fenantrenos / Polímeros / Artritis Reumatoide / Dióxido de Silicio / Diterpenos / Nanopartículas / Liberación de Fármacos / Indoles / Antiinflamatorios Idioma: En Revista: Pharm Res Año: 2024 Tipo del documento: Article