Your browser doesn't support javascript.
loading
Unrolled Optimization via Physics-Assisted Convolutional Neural Network for MR-Based Electrical Properties Tomography: A Numerical Investigation.
Zumbo, Sabrina; Mandija, Stefano; Meliado, Ettore F; Stijnman, Peter; Meerbothe, Thierry G; van den Berg, Cornelis A T; Isernia, Tommaso; Bevacqua, Martina T.
Afiliación
  • Zumbo S; Department DIIESUniversità Mediterranea di Reggio Calabria 89124 Reggio Calabria Italy.
  • Mandija S; Department of Radiotherapy, Division of Imaging & OncologyUniversity Medical Center Utrecht 3584 CX Utrecht The Netherlands.
  • Meliado EF; Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht University 3584 CS Utrecht The Netherlands.
  • Stijnman P; Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht University 3584 CS Utrecht The Netherlands.
  • Meerbothe TG; Department of Radiotherapy, Division of Imaging & OncologyUniversity Medical Center Utrecht 3584 CX Utrecht The Netherlands.
  • van den Berg CAT; Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht University 3584 CS Utrecht The Netherlands.
  • Isernia T; Department of Radiotherapy, Division of Imaging & OncologyUniversity Medical Center Utrecht 3584 CX Utrecht The Netherlands.
  • Bevacqua MT; Computational Imaging Group for MR Diagnostics & Therapy, Center for Image SciencesUtrecht University 3584 CS Utrecht The Netherlands.
IEEE Open J Eng Med Biol ; 5: 505-513, 2024.
Article en En | MEDLINE | ID: mdl-39050972
ABSTRACT
Magnetic Resonance imaging based Electrical Properties Tomography (MR-EPT) is a non-invasive technique that measures the electrical properties (EPs) of biological tissues. In this work, we present and numerically investigate the performance of an unrolled, physics-assisted method for 2D MR-EPT reconstructions, where a cascade of Convolutional Neural Networks is used to compute the contrast update. Each network takes in input the EPs and the gradient descent direction (encoding the physics underlying the adopted scattering model) and returns as output the updated contrast function. The network is trained and tested in silico using 2D slices of realistic brain models at 128 MHz. Results show the capability of the proposed procedure to reconstruct EPs maps with quality comparable to that of the popular Contrast Source Inversion-EPT, while significantly reducing the computational time.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: IEEE Open J Eng Med Biol Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: IEEE Open J Eng Med Biol Año: 2024 Tipo del documento: Article