Your browser doesn't support javascript.
loading
Prenatal cannabis exposure is associated with alterations in offspring DNA methylation at genes involved in neurodevelopment, across the life course.
Noble, Alexandra J; Adams, Alex T; Satsangi, Jack; Boden, Joseph M; Osborne, Amy J.
Afiliación
  • Noble AJ; Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK. alexandra.noble@ndm.ox.ac.uk.
  • Adams AT; Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK.
  • Satsangi J; Biomedical Research Centre, University of Oxford, Oxford, UK.
  • Boden JM; Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK.
  • Osborne AJ; Biomedical Research Centre, University of Oxford, Oxford, UK.
Mol Psychiatry ; 2024 Sep 14.
Article en En | MEDLINE | ID: mdl-39277688
ABSTRACT
Prenatal cannabis exposure (PCE) is of increasing concern globally, due to the potential impact on offspring neurodevelopment, and its association with childhood and adolescent brain development and cognitive function. However, there is currently a lack of research addressing the molecular impact of PCE, that may help to clarify the association between PCE and neurodevelopment. To address this knowledge gap, here we present epigenome-wide association study data across multiple time points, examining the effect of PCE and co-exposure with tobacco using two longitudinal studies, the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Christchurch Health and Development Study (CHDS) at birth (0 y), 7 y and 15-17 y (ALSPAC), and ~27 y (CHDS). Our findings reveal genome-wide significant DNA methylation differences in offspring at 0 y, 7 y, 15-17 y, and 27 y associated with PCE alone, and co-exposure with tobacco. Importantly, we identified significantly differentially methylated CpG sites within the genes LZTS2, NPSR1, NT5E, CRIP2, DOCK8, COQ5, and LRP5 that are shared between different time points throughout development in offspring. Notably, functional pathway analysis showed enrichment for differential DNA methylation in neurodevelopment, neurotransmission, and neuronal structure pathways, and this was consistent across all timepoints in both cohorts. Given the increasing volume of epidemiological evidence that suggests a link between PCE and adverse neurodevelopmental outcomes in exposed offspring, this work highlights the need for further investigation into PCE, particularly in larger cohorts.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Mol Psychiatry Asunto de la revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Mol Psychiatry Asunto de la revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Año: 2024 Tipo del documento: Article