Differential activities of H+ extrusion systems in MDCK cells due to extracellular osmolality and pH.
Am J Physiol
; 273(4): F499-506, 1997 10.
Article
en En
| MEDLINE
| ID: mdl-9362327
The aim of the present study was to obtain detailed information on MDCK cell proton secretion characteristics under various growth conditions. Confluent monolayers cultured on glass coverslips were adapted over 48 h to media with different osmolality and pH (200 mosmol/kgH2O, pH 7.4; 300 mosmol/kgH2O, pH 7.4; and 600 mosmol/kgH2O, pH 6.8) corresponding to the luminal fluid composition of the collecting duct segments found in the in renal cortex, the outer stripe of outer medulla and inner medulla. Proton fluxes were determined from the recovery of intracellular pH following an acid load induced by an NH4Cl pulse times the corresponding intrinsic buffering power (beta(i)). The intracellular buffering power was found to change only with culture medium osmolality but not with culture medium pH. In addition to an amiloride and Hoe-694-sensitive Na+/H+ exchange, Madin-Darby canine kidney (MDCK) cells possess a Sch-28080-sensitive, K+-dependent H+ extrusion mechanism that is increased upon adaptation of monolayers to hyperosmotic-acidic culture conditions. A significant contribution of the bafilomycin A1-sensitive vacuolar H+-ATPase could be found only in cells adapted to hyposmotic culture conditions. Exposure of MDCK cells to 10(-5) or 10(-7) M aldosterone for either 1 or 18 h did not alter the H+ extrusion characteristics significantly. The results obtained show that different extracellular osmolality and pH induce different MDCK phenotypes with respect to their H+-secreting systems.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Espacio Extracelular
/
Hidrógeno
/
Riñón
Límite:
Animals
Idioma:
En
Revista:
Am J Physiol
Año:
1997
Tipo del documento:
Article
País de afiliación:
Austria