Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
Gene ; 875jul.2023.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1444289

RESUMO

Familial hypercholesterolemia (FH) is a monogenic disease characterized by high plasma low-density lipoprotein cholesterol (LDL-c) levels and increased risk of premature atherosclerotic cardiovascular disease. Mutations in FH-related genes account for 40% of FH cases worldwide. In this study, we aimed to assess the pathogenic variants in FH-related genes in the Brazilian FH cohort FHBGEP using exon-targeted gene sequencing (ETGS) strategy. FH patients (n = 210) were enrolled at five clinical sites and peripheral blood samples were obtained for laboratory testing and genomic DNA extraction. ETGS was performed using MiSeq platform (Illumina). To identify deleterious variants in LDLR, APOB, PCSK9, and LDLRAP1, the long-reads were subjected to Burrows-Wheeler Aligner (BWA) for alignment and mapping, followed by variant calling using Genome Analysis Toolkit (GATK) and ANNOVAR for variant annotation. The variants were further filtered using in-house custom scripts and classified according to the American College Medical Genetics and Genomics (ACMG) guidelines. A total of 174 variants were identified including 85 missense, 3 stop-gain, 9 splice-site, 6 InDel, and 71 in regulatory regions (3'UTR and 5'UTR). Fifty-two patients (24.7%) had 30 known pathogenic or likely pathogenic variants in FH-related genes according to the American College Medical and Genetics and Genomics guidelines. Fifty-three known variants were classified as benign, or likely benign and 87 known variants have shown uncertain significance. Four novel variants were discovered and classified as such due to their absence in existing databases. In conclusion, ETGS and in silico prediction studies are useful tools for screening deleterious variants and identification of novel variants in FH-related genes, they also contribute to the molecular diagnosis in the FHBGEP cohort.

2.
Nutrients, v.15, n. 22. 4711, nov. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-5168

RESUMO

Aim: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. Methods: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. Results: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. Conclusion: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.

3.
Braz J Med Biol Res, v. 56, e12927, jul. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-5098

RESUMO

The impact of linseed oil as a lipid source on liver disease induced by a high-carbohydrate diet (HCD) was evaluated. Adult male Swiss mice received an HCD containing carbohydrates (72.1%), proteins (14.2%), and lipids (4.0%). The Control HCD group (HCD-C) received an HCD containing lard (3.6%) and soybean oil (0.4%) as lipid sources. The L10 and L100 groups received an HCD with 10 and 100% linseed oil as lipid sources, respectively. A group of mice were euthanized before receiving the diets (day 0) and the remaining groups after 56 days of receiving the diets (HCD-C, L10, and L-100 groups). Morphological and histopathological analyses, as well as collagen deposition were evaluated. Perivenous hepatocytes (PVH) of the HCD-C group were larger (P<0.05) than periportal hepatocytes (PPH) in the median lobe (ML) and left lobe (LL). There was a greater (P<0.05) deposition of type I collagen in PPH (vs PVH) and in the ML (vs LL). The ML exhibited a higher proportion of apoptotic bodies, inflammatory infiltrate, and hepatocellular ballooning. All these alterations (hepatocyte size, deposition of type I collagen, apoptotic bodies, inflammatory infiltrate, and hepatocellular ballooning) induced by HCD were prevented or attenuated in L10 and L100 groups. Another indicator of the beneficial effects of linseed oil was the lower (P<0.05) number of binucleated hepatocytes (HCD-C vs L10 or L100 group). In general, the L100 group had greater effects than the L10 group. In conclusion, linseed oil impedes or reduces the liver injury progression induced by an HCD.

4.
Braz J Med Biol Res, v. 56, e12742, mai. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4962

RESUMO

Brain glucose hypometabolism and neuroinflammation are early pathogenic manifestations in neurological disorders. Neuroinflammation may also disrupt leptin signaling, an adipokine that centrally regulates appetite and energy balance by acting on the hypothalamus and exerting neuroprotection in the hippocampus. The Goto-Kakizaki (GK) rat is a non-obese type 2 diabetes mellitus (T2DM) animal model used to investigate diabetes-associated molecular mechanisms without obesity jeopardizing effects. Wistar and GK rats received the maintenance adult rodent diet. Also, an additional control group of Wistar rats received a high-fat and high-sugar diet (HFHS) provided by free consumption of condensed milk. All diets and water were provided ad libitum for eight weeks. Brain glucose uptake was evaluated by 2-deoxy-2-[fluorine-18] fluoro-D-glucose under basal (saline administration) or stimulated (CL316,243, a selective β3-AR agonist) conditions. The animals were fasted for 10-12 h, anesthetized, and euthanized. The brain was quickly dissected, and the hippocampal area was sectioned and stored at -80°C in different tubes for protein and RNA analyses on the same animal. GK rats exhibited attenuated brain glucose uptake compared to Wistar animals and the HFHS group under basal conditions. Also, the hippocampus of GK rats displayed upregulated leptin receptor, IL-1β, and IL-6 gene expression and IL-1β and the subunit of the transcription factor NF-κB (p-p65) protein expression. No significant alterations were detected in the hippocampus of HFHS rats. Our data indicated that a genetic predisposition to T2DM has significant brain deteriorating features, including brain glucose hypometabolism, neuroinflammation, and leptin signaling disruption in the hippocampal area.

5.
Clin Sci, v. 137, n. 10, 807–821, mai. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4936

RESUMO

Lymphocytes act as regulatory and effector cells in inflammation and infection situations. A metabolic switch towards glycolytic metabolism predominance occurs during T lymphocyte differentiation to inflammatory phenotypes (Th1 and Th17 cells). Maturation of T regulatory cells, however, may require activation of oxidative pathways. Metabolic transitions also occur in different maturation stages and activation of B lymphocytes. Under activation, B lymphocytes undergo cell growth and proliferation, associated with increased macromolecule synthesis. The B lymphocyte response to an antigen challenge requires an increased adenosine triphosphate (ATP) supply derived mainly through glycolytic metabolism. After stimulation, B lymphocytes increase glucose uptake, but they do not accumulate glycolytic intermediates, probably due to an increase in various metabolic pathway ‘end product’ formation. Activated B lymphocytes are associated with increased utilization of pyrimidines and purines for RNA synthesis and fatty acid oxidation. The generation of plasmablasts and plasma cells from B lymphocytes is crucial for antibody production. Antibody production and secretion require increased glucose consumption since 90% of consumed glucose is needed for antibody glycosylation. This review describes critical aspects of lymphocyte metabolism and functional interplay during activation. We discuss the primary fuels for the metabolism of lymphocytes and the particularities of T and B cell metabolism, including the differentiation of lymphocytes, stages of development of B cells, and the production of antibodies.

6.
Viruses, v. 15, n. 4, 999, abr. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4889

RESUMO

Since December 2019, the world has been experiencing the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we now face the emergence of several variants. We aimed to assess the differences between the wild-type (Wt) (Wuhan) strain and the P.1 (Gamma) and Delta variants using infected K18-hACE2 mice. The clinical manifestations, behavior, virus load, pulmonary capacity, and histopathological alterations were analyzed. The P.1-infected mice showed weight loss and more severe clinical manifestations of COVID-19 than the Wt and Delta-infected mice. The respiratory capacity was reduced in the P.1-infected mice compared to the other groups. Pulmonary histological findings demonstrated that a more aggressive disease was generated by the P.1 and Delta variants compared to the Wt strain of the virus. The quantification of the SARS-CoV-2 viral copies varied greatly among the infected mice although it was higher in P.1-infected mice on the day of death. Our data revealed that K18-hACE2 mice infected with the P.1 variant develop a more severe infectious disease than those infected with the other variants, despite the significant heterogeneity among the mice.

7.
Nutrients, v. 15, n. 7, 1708, mar. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4860

RESUMO

Herein, we investigated the effect of fish oil supplementation combined with a strength-training protocol, for 6 weeks, on muscle damage induced by a single bout of strength exercise in untrained young men. Sixteen men were divided into two groups, supplemented or not with fish oil, and they were evaluated at the pre-training period and post-training period. We investigated changes before and 0, 24, and 48 h after a single hypertrophic exercise session. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities, plasma interleukin-6 (IL-6) and C-reactive protein (CRP) levels, and the redox imbalance were increased in response to the single-bout session of hypertrophic exercises at baseline (pre-training period) and decreased during the post-training period in the control group due to the repeated-bout effect (RBE). The fish oil supplementation exacerbated this reduction and improved the redox state. In summary, our findings demonstrate that, in untrained young men submitted to a strength-training protocol, fish oil supplementation is ideal for alleviating the muscle injury, inflammation, and redox imbalance induced by a single session of intense strength exercises, highlighting this supplementation as a beneficial strategy for young men that intend to engage in strength-training programs.

8.
Front Nutr, v. 10, 1181809, mar. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4856
9.
Proc Natl Acad Sci USA, v. 120, n. 4, e2211933120, jan. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4787

RESUMO

Metformin is the most prescribed drug for DM2, but its site and mechanism of action are still not well established. Here, we investigated the effects of metformin on basolateral intestinal glucose uptake (BIGU), and its consequences on hepatic glucose production (HGP). In diabetic patients and mice, the primary site of metformin action was the gut, increasing BIGU, evaluated through PET-CT. In mice and CaCo2 cells, this increase in BIGU resulted from an increase in GLUT1 and GLUT2, secondary to ATF4 and AMPK. In hyperglycemia, metformin increased the lactate (reducing pH and bicarbonate in portal vein) and acetate production in the gut, modulating liver pyruvate carboxylase, MPC1/2, and FBP1, establishing a gut-liver crosstalk that reduces HGP. In normoglycemia, metformin-induced increases in BIGU is accompanied by hypoglycemia in the portal vein, generating a counter-regulatory mechanism that avoids reductions or even increases HGP. In summary, metformin increases BIGU and through gut-liver crosstalk influences HGP.

10.
Toxicon, v. 222, 106986, jan. 2023
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4750

RESUMO

Crotoxin (CTX) is a neurotoxin that is isolated from the venom of Crotalus durissus terrificus, which displays immunomodulatory, anti-inflammatory, and anti-tumoral effects. Previous research has demonstrated that CTX promotes the adherence of leukocytes to the endothelial cells in blood microcirculation and the high endothelial venules of lymph nodes, which reduces the number of blood cells and lymphocytes. Studies have also shown that these effects are mediated by lipoxygenase-derived mediators. However, the exact lipoxygenase-derived eicosanoid involved in the CTX effect on lymphocytes is yet to be characterized. As CTX stimulates lipoxin-derived mediators from macrophages and lymphocyte effector functions could be modulated by activating formyl peptide receptors, we aimed to investigate whether these receptors were involved in CTX-induced redistribution and functions of lymphocytes in rats. We used male Wistar rats treated with CTX to demonstrate that Boc2 (butoxycarbonyl-Phe-Leu-Phe-Leu-Phe), an antagonist of formyl peptide receptors, prevented CTX-induced decrease in the number of circulating lymphocytes and increased the expression of the lymphocyte adhesion molecule LFA1. CTX reduced the T and B lymphocyte functions, such as lymphocyte proliferation in response to the mitogen Concanavalin A and antibody production in response to BSA immunization, respectively, which was prevented by the administration of Boc2. Importantly, mesenteric lymph node lymphocytes from CTX-treated rats showed an increased release of 15-epi-LXA4. These results indicate that formyl peptide receptors mediate CTX-induced redistribution of lymphocytes and that 15-epi-LXA4 is a key mediator of the immunosuppressive effects of CTX.

11.
Int. j. morphol ; 40(3): 640-649, jun. 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1385658

RESUMO

SUMMARY: To describe the physical therapy protocols used in critically ill patients to attenuate skeletal muscle atrophy. We conducted a search in PubMed and Embase from inception to November 2020. Observational or experimental studies published in English or Spanish that evaluated the effect of physical therapy protocols on the attenuation of skeletal muscle atrophy in critically ill patients through muscle strength or mass measurement were considered eligible. Studies were only included if they reported a detailed description of the dosing of the interventions. Seventeen studies met the eligibility criteria. We included randomised clinical trials (n = 16) and observational studies (n = 1). The total population of the included studies was 872 critically ill patients. The studies aimed to evaluate the reliability, safety or effectiveness of neuromuscular electrical stimulation (n = 10) protocols, early mobilisation (n = 3), ergometer training (n = 2), transfers in tilt table (n = 1), and blood flow restriction (n = 1). Physical therapy protocols are part of the critically ill patient's integral management. Strategies such as passive mobilisation, in-bed and out-of-bed transfers, gait training, ergometer training, and neuromuscular electrical stimulation substantially impact critically ill patients' prognoses and quality of life after hospital discharge.


RESUMEN: Describir los protocolos de terapia física usados en pacientes críticos para atenuar la atrofia muscular esquelética. Realizamos una búsqueda en PubMed y Embase desde el inicio hasta noviembre de 2020. Se consideraron los estudios observacionales o experimentales publicados en inglés o español que evaluaron el efecto de los protocolos de terapia física en la atenuación de la atrofia del músculo esquelético en pacientes críticos a través de la medición de la fuerza o la masa muscular. Los estudios solo se incluyeron si informaron una descripción detallada de la dosificación de las intervenciones. Diecisiete estudios cumplieron los criterios de elegibilidad. Se incluyeron ensayos clínicos aleatorizados (n = 16) y estudios observacionales (n = 1). La población total de los estudios incluidos fue de 872 pacientes en estado crítico. Los estudios tuvieron como objetivo evaluar la confiabilidad, seguridad o efectividad de los protocolos de estimulación eléctrica neuromuscular (n = 10), movilización temprana (n = 3), entrenamiento con ergómetro (n = 2), transferencias en mesa basculante (n = 1) y restricción del flujo sanguíneo (n = 1). Los protocolos de terapia física forman parte del manejo integral del paciente crítico. Es- trategias como la movilización pasiva, los traslados dentro y fuera de la cama, el entrenamiento de la marcha, el entrenamiento con ergómetro y la estimulación eléctrica neuromuscular tienen un impacto sustancial en el pronóstico y la calidad de vida de los pacientes críticos después del alta hospitalaria.


Assuntos
Humanos , Atrofia Muscular/terapia , Modalidades de Fisioterapia , Músculo Esquelético/patologia , Respiração Artificial/efeitos adversos , Repouso em Cama/efeitos adversos , Atrofia Muscular/etiologia , Atrofia Muscular/reabilitação , Protocolos Clínicos , Estado Terminal , Unidades de Terapia Intensiva
12.
Front Microbiol, v. 13, 1037469, nov. 2022
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4714

RESUMO

Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for pro-inflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.

13.
Front Microbiol, v. 13, 1037467, nov. 2022
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4705

RESUMO

Coronavirus disease 2019 (COVID-19) is triggered by the SARS-CoV-2, which is able to infect and cause dysfunction not only in lungs, but also in multiple organs, including central nervous system, skeletal muscle, kidneys, heart, liver, and intestine. Several metabolic disturbances are associated with cell damage or tissue injury, but the mechanisms involved are not yet fully elucidated. Some potential mechanisms involved in the COVID-19-induced tissue dysfunction are proposed, such as: (a) High expression and levels of proinflammatory cytokines, including TNF-α IL-6, IL-1β, INF-α and INF-β, increasing the systemic and tissue inflammatory state; (b) Induction of oxidative stress due to redox imbalance, resulting in cell injury or death induced by elevated production of reactive oxygen species; and (c) Deregulation of the renin-angiotensin-aldosterone system, exacerbating the inflammatory and oxidative stress responses. In this review, we discuss the main metabolic disturbances observed in different target tissues of SARS-CoV-2 and the potential mechanisms involved in these changes associated with the tissue dysfunction.

14.
Front Microbiol, v. 13, 1037469, nov. 2022
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4700

RESUMO

Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for proinflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.

15.
Braz J Med Biol Res, v. 55, e11910, jun. 2022
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4489

RESUMO

The Goto-Kakizaki (GK) rat is a non-obese experimental model of type 2 diabetes mellitus (T2DM) that allows researchers to monitor diabetes-induced changes without jeopardizing the effects of obesity. This rat strain exhibits notable gastrointestinal features associated with T2DM, such as marked alterations in intestinal morphology, reduced intestinal motility, slow transit, and modified microbiota compared to Wistar rats. The primary treatments for diabetic patients include administration of hypoglycemic agents and insulin, and lifestyle changes. Emerging procedures, including alternative therapies, metabolic surgeries, and modulation of the intestinal microbiota composition, have been shown to improve the diabetic state of GK rats. This review describes the morpho-physiological diabetic-associated features of the gastrointestinal tract (GIT) of GK rats. We also describe promising strategies, e.g., metabolic surgery and modulation of gut microbiota composition, used to target the GIT of this animal model to improve the diabetic state.

16.
Toxicon, v. 217, p. 46-55, out. 2022
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4481

RESUMO

Crotoxin (CTX), the major toxin of Crotalus durissus terrificus snake venom, induces an inhibitory effect on tumor development and modulates the functions of macrophages (MØs), which play a key role as a defense mechanism against tumor growth. In early tumor progression stage, MØs are avidly phagocytic (inflammatory cell), releasing reactive nitrogen intermediates-RNI/ROI and cytokines TNF-α, IL-1β, and IL-6. However, when the tumor has been developed, tumor-associated MØ (angiogenic cell) presents a decrease in the mentioned activities. We reported that CTX stimulates H2O2 release, NO production and secretion of cytokines by peritoneal MØs obtained from non-tumor-bearing rats. Considering that the mentioned mediators control tumor growth, it is mandatory to investigate whether CTX stimulates the production of these mediators by MØs obtained from tumor-bearing animals. The aim of this work was then to evaluate the CTX effect on metabolism and functions of peritoneal MØs obtained from Walker 256 tumor-bearing rats. For this purpose, male Wistar rats were subcutaneously inoculated in the right flank with 1 mL sterile suspension of 2 × 107 Walker 256 tumor cells. CTX (18 μg per animal) was subcutaneously administered in two protocols: a) on the 1st day of tumor cell injection and b) on the 4th day of tumor cell inoculation. In both protocols, MØs were obtaining on the 14th day of tumor cell inoculation to evaluate the release of H2O2, NO, and pro-inflammatory cytokines (IL-1β, TNFα, and IL-6); maximal activity of hexokinase, glucose-6-phosphate dehydrogenase, citrate synthase, and 14CO2 production from [U–14C]-glucose and [U–14C]-glutamine. The treatment with CTX stimulated the release of NO, H2O2, and cytokines, and glucose and glutamine metabolism. Metabolic and functional changes induced by CTX were accompanied by a decrease of tumor growth as indicated by tumor fresh weight and diameter. These results indicate CTX not only as a scientific tool to investigate changes in metabolism and functions of peritoneal MØs but also for a better understanding of the mechanisms involved in tumor growth.

17.
Crit Care Explor, v. 4, n. 8, e0734, ago. 2022
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4452

RESUMO

This study sought to identify monocyte alterations from septic patients after hospital discharge by evaluating gene expression of inflammatory mediators and monocyte polarization markers. It was hypothesized that sepsis reprograms the inflammatory state of monocytes, causing effects that persist after hospital discharge and influencing patient outcomes. The gene expression patterns of inflammatory receptors, M1 and M2 macrophage polarization markers, NLRP3 inflammasome components, and pro- and anti-inflammatory cytokines in monocytes were assessed. Thirty-four patients from the University of São Paulo Hospital, during the acute sepsis phase (phase A), immediately after ICU discharge (phase B), and 3 months (phase C), 6 months (phase D), 1 year (phase E), and 3 years (phase F) after discharge, were included. Patients that died during phases A and B were grouped separately, and the remaining patients were collectively termed the survivor group. The gene expression of toll-like receptor (TLR)2 and TLR4 (inflammatory receptors), NLRP3, NFκB1, adaptor molecule apoptosis-associated speck-like protein containing a CARD, caspase 1, caspase 11, and caspase 12 (NLRP3 inflammasome components), interleukin-1α, interleukin-1β, interleukin-18, and high-mobility group box 1 protein (proinflammatory cytokines), interleukin-10 (anti-inflammatory cytokine), C-X-C motif chemokine ligand 10, C-X-C motif chemokine ligand 11, and interleukin-12p35 (M1 inflammatory polarization markers), and C-C motif chemokine ligand 14, C-C motif chemokine ligand 22, transforming growth factor-beta (TGF-β), SR-B1, and peroxisome proliferator-activated receptor γ (M2 anti-inflammatory polarization and tissue repair markers) was upregulated in monocytes from phase A until phase E compared with the control group. Sepsis reprograms the inflammatory state of monocytes, probably contributing to postsepsis syndrome development and mortality.

18.
Front Immunol, v. 13, 871874, jul. 2022
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4442

RESUMO

The COVID-19 pandemic caused by the severe acute syndrome virus 2 (SARS-CoV-2) has been around since November 2019. As of early June 2022, more than 527 million cases were diagnosed, with more than 6.0 million deaths due to this disease. Coronaviruses accumulate mutations and generate greater diversity through recombination when variants with different mutations infect the same host. Consequently, this virus is predisposed to constant and diverse mutations. The SARS-CoV-2 variants of concern/interest (VOCs/VOIs) such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28/P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have quickly spread across the world. These VOCs and VOIs have accumulated mutations within the spike protein receptor-binding domain (RBD) which interacts with the angiotensin-2 converting enzyme (ACE-2) receptor, increasing cell entry and infection. The RBD region is the main target for neutralizing antibodies; however, other notable mutations have been reported to enhance COVID-19 infectivity and lethality. Considering the urgent need for alternative therapies against this virus, an anti-SARS-CoV-2 equine immunoglobulin F(ab’)2, called ECIG, was developed by the Butantan Institute using the whole gamma-irradiated SARS-CoV-2 virus. Surface plasmon resonance experiments revealed that ECIG binds to wild-type and mutated RBD, S1+S2 domains, and nucleocapsid proteins of known VOCs, including Alpha, Gamma, Beta, Delta, Delta Plus, and Omicron. Additionally, it was observed that ECIG attenuates the binding of RBD (wild-type, Beta, and Omicron) to human ACE-2, suggesting that it could prevent viral entry into the host cell. Furthermore, the ability to concomitantly bind to the wild-type and mutated nucleocapsid protein likely enhances its neutralizing activity of SARS-CoV-2. We postulate that ECIG benefits COVID-19 patients by reducing the infectivity of the original virus and existing variants and may be effective against future ones. Impacting the course of the disease, mainly in the more vulnerable, reduces infection time and limits the appearance of new variants by new recombination.

19.
Front Med, v. 9, 917008, jun, 2022
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4419

RESUMO

Coronavirus disease 2019 (COVID-19) features hyper-inflammation, cytokine storm, neutrophil function changes, and sodium chloride (NaCl) homeostasis disruption, while the treatment with NaCl hypertonic solutions (HS) controls electrolytic body homeostasis and cell functions. HS treatment is a simple, popular, economic, and feasible therapy to regulate leukocyte function with a robust anti-inflammatory effect in many inflammatory diseases. The purpose of this narrative review is to highlight the knowledge on the use of HS approaches against viral infection over the past years and to describe the mechanisms involved in the release of neutrophil extracellular traps (NETs) and production of cytokine in severe lung diseases, such as COVID-19. We reported the consequences of hyponatremia in COVID-19 patients, and the immunomodulatory effects of HS, either in vitro or in vivo. We also described the relationship between electrolyte disturbances and COVID-19 infection. Although there is still a lack of clinical trials, hypertonic NaCl solutions have marked effects on neutrophil function and NETs formation, emerging as a promising adjuvant therapy in COVID-19.

20.
Braz J Med Biol Res, v. 55, e11819, jun. 2022
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-4412

RESUMO

Diabetes is associated with a worse prognosis and a high risk of morbidity and mortality in COVID-19 patients. We aimed to evaluate the main factors involved in the poor prognosis in diabetic patients. A total of 984 patients diagnosed with COVID-19 admitted to the hospital were included in this study. Patients were first divided into type-2 diabetic (DM+) and non-diabetic (DM–) groups. The participants were analyzed based on the National Early Warning Score (NEWS) and on the Quick-Sequential Organ Failure Assessment (qSOFA) to find the best prognostic risk score for our study. The DM+ and DM– groups were divided into non-severe and severe groups. Comparative and correlative analyses were used to identify the physiological parameters that could be employed for creating a potential risk indicator for DM+ COVID-19 patients. We found a poorer prognosis for the DM+ COVID-19 patients with a higher ICU admission rate, mechanical ventilation rate, vasopressor use, dialysis, and longer treatment times compared with the DM– group. DM+ COVID-19 patients had increased plasma glucose, lactate, age, urea, NEWS, and D-dimer levels, herein referred to as the GLAUND set, and worse prognosis and outcomes when compared with infected DM– patients. The NEWS score was a better indicator for assessing COVID-19 severity in diabetic patients than the q-SOFA score. In conclusion, diabetic COVID-19 patients should be assessed with the NEWS score and GLAUND set for determining their prognosis COVID-19 prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA