Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Epigenomics (Online) ; : 1-12, jun.2024.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1560857

RESUMO

AIM: Methylation of LDLR, PCSK9 and LDLRAP1 CpG sites was assessed in patients with familial hypercholesterolemia (FH). METHODS: DNA methylation of was analyzed by pyrosequencing in 131 FH patients and 23 normolipidemic (NL) subjects. RESULTS: LDLR, PCSK9 and LDLRP1 methylation was similar between FH patients positive (MD) and negative (non-MD) for pathogenic variants in FH-related genes. LDLR and PCSK9 methylation was higher in MD and non-MD groups than NL subjects (p < 0.05). LDLR, PCSK9 and LDLRAP1 methylation profiles were associated with clinical manifestations and cardiovascular events in FH patients (p < 0.05). CONCLUSION: Differential methylation of LDLR, PCSK9 and LDLRAP1 is associated with hypercholesterolemia and cardiovascular events. This methylation profile maybe useful as a biomarker and contribute to the management of FH.

2.
Pharmacogenet. genomics ; 34(4): 91-104, jun.2024.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1552919

RESUMO

OBJECTIVES: This study explored the association of deleterious variants in pharmacodynamics (PD) genes with statin response and adverse effects in patients with familial hypercholesterolemia (FH) and analyzed their potential effects on protein structure and stability. METHODS: Clinical and laboratory data were obtained from 144 adult FH patients treated with statins. A panel of 32 PD genes was analyzed by exon-targeted gene sequencing. Deleterious variants were identified using prediction algorithms and their structural effects were analyzed by molecular modeling studies. RESULTS: A total of 102 variants were predicted as deleterious (83 missense, 8 stop-gain, 4 frameshift, 1 indel, 6 splicing). The variants ABCA1 rs769705621 (indel), LPA rs41267807 (p.Tyr2023Cys) and KIF6 rs20455 (p.Trp719Arg) were associated with reduced low-density lipoprotein cholesterol (LDLc) response to statins, and the LPL rs1801177 (p.Asp36Asn) with increased LDLc response (P < 0.05). LPA rs3124784 (p.Arg2016Cys) was predicted to increase statin response (P = 0.022), and ABCA1 rs769705621 to increase the risk of statin-related adverse events (SRAE) (P = 0.027). LPA p.Arg2016Cys and LPL p.Asn36Asp maintained interactions with solvent, LPA p.Tyr2023Cys reduced intramolecular interaction with Gln1987, and KIF6 p.Trp719Arg did not affect intramolecular interactions. DDMut analysis showed that LPA p.Arg2016Cys and p.Tyr2023Cys and LPL p.Asp36Asn caused energetically favorable changes, and KIF6 p.Trp719Arg resulted in unfavorable energetic changes, affecting protein stability. CONCLUSION: Deleterious variants in ABCA1, LPA, LPL and KIF6 are associated with variability in LDLc response to statins, and ABCA1 rs769705621 is associated with SRAE risk in FH patients. Molecular modeling studies suggest that LPA p.Tyr2023Cys and KIF6 p.Trp719Arg disturb protein conformational structure and stability.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Inibidores de Hidroximetilglutaril-CoA Redutases , Transportador 1 de Cassete de Ligação de ATP , Hiperlipoproteinemia Tipo II , Lipase Lipoproteica
3.
Gene ; 890: 147821, jan.2024.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1524703

RESUMO

Familial Hypercholesterolemia (FH) is a genetic disorder associated with premature atherosclerosis and increased risk of cardiovascular diseases. LDLR deleterious mutations are associated with FH, however the role of some missense variants in FH pathogenicity remains to be elucidated. This study explored the predictive impact of LDLR missense variants on protein structure and investigated their functional effects on LDLR expression in HepG2 cells transfected with CRISPR/Cas9 constructs. FH (n = 287) and non-FH patients (n = 45) were selected, and lipid profile was obtained from medical records. LDLR variants were identified using an exon-targeted gene sequencing strategy, considering its cost-effective to increase accuracy in the identification step of the most likely FH-related variants in a less laborious process. LDLR variants were selected based on conflicting pathogenicity results found in Clinvar, in silico prediction tools, affected LDLR domains, and less common variants considering minor allele frequency < 0.05. Molecular modeling studies were used to predict the effects of LDLR missense variants on protein structure. Recombinant LDLR variants were constructed using CRISPR/Cas9 system and were used to transfect HepG2 cells. Functional assays in transfected cells were performed to assess LDLR expression using flow cytometry and western blotting, and LDLR activity using flow cytometry and confocal microscopy. The variants rs121908039 (c.551G>A, p.C184Y), rs879254797 (c.1118G>A, p.G373D), rs28941776 (c.1646G>A, p.G549D), rs750518671 (c.2389G>C, p.V797L), rs5928 (c.2441G>A, p.R814Q) and rs137853964 (c.2479G>A, p.V827I) were selected for molecular docking analysis. The p.C184Y exhibited a favorable energy change for protein stability due to its interaction with EGF-A/EGF-B regions; p.G373D and p.G549D displayed intermediate energy changes; and p.R814Q and p.V827I showed smaller energy changes. The results of functional assays showed that p.G373D, p.V797L and p.R814Q reduced LDLR expression and activity (p < 0.05). Microscopic analysis of the p.V797L and p.G373D variants revealed altered lipid localization and accumulation in transfected HepG2 cells. Carriers of p.G549D, p.V797L and p.R814Q had higher LDL cholesterol levels than non-FH group, and (p < 0.05). p.G373D and p.G549D were associated with clinical manifestations of FH. In conclusion, the p.C184Y, p.G373D, p.G549D and p.R814Q variants alter protein stability and intramolecular interactions, while p.V797L has a minimal impact on protein stability, and p.V827I has no significant intramolecular interactions. p.G373D, p.V767L and p.R814Q are associated with impaired LDLR expression and activity.


Assuntos
Hiperlipoproteinemia Tipo II , Western Blotting
4.
Hearts ; 4(4): 97-117, dez.2023. ilus
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1530621

RESUMO

Cardiomyopathies are major causes of heart failure. Chagas disease (CD) is caused by the parasite Trypanosoma cruzi, and it is endemic in Central and South America. Thirty percent of cases evolve into chronic chagas cardiomyopathy (CCC), which has worse prognosis as compared with other cardiomyopathies. In vivo bioenergetic analysis and ex vivo proteomic analysis of myocardial tissues highlighted worse mitochondrial dysfunction in CCC, and previous studies identified nuclear-encoded mitochondrial gene variants segregating with CCC. Here, we assessed the role of the mitochondrial genome through mtDNA copy number variations and mtDNA haplotyping and sequencing from heart or blood tissues of severe, moderate CCC and asymptomatic/indeterminate Chagas disease as well as healthy controls as an attempt to help decipher mitochondrial-intrinsic genetic involvement in Chagas disease development. We have found that the mtDNA copy number was significantly lower in CCC than in heart tissue from healthy individuals, while blood mtDNA content was similar among asymptomatic Chagas disease, moderate, and severe CCC patients. An MtDNA haplogrouping study has indicated that African haplogroups were over represented in the Chagas subject groups in comparison with healthy Brazilian individuals. The European lineage is associated with protection against cardiomyopathy and the macro haplogroup H is associated with increased risk towards CCC. Using mitochondria DNA sequencing, 84 mtDNA-encoded protein sequence pathogenic variants were associated with CCC. Among them, two variants were associated to left ventricular non-compaction and two to hypertrophic cardiomyopathy. The finding that mitochondrial protein-coding SNPs and mitochondrial haplogroups associate with risk of evolving to CCC is consistent with a key role of mitochondrial DNA in the development of chronic chagas disease cardiomyopathy.

5.
Chem. Phys. lipids ; 257: 105348, nov.2023. ilus
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1524856

RESUMO

Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. Statins inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum lipidomic profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or rosuvastatin (40 mg/day). LDL-c response was considered good (40­70 % reduction, n = 9) or poor (3­33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and triacylglycerols (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted <0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.


Assuntos
Biomarcadores , Hiperlipoproteinemia Tipo II , Fosfatidilinositóis , Inibidores de Hidroximetilglutaril-CoA Redutases , Lipidômica
6.
Nutr. res ; 119: 21-32, nov.2023. ilus
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1525282

RESUMO

Polymorphisms in genes of leptin-melanocortin and insulin pathways have been associated with obesity and type 2 diabetes. We hypothesized that polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory markers and food intake composition in Brazilian subjects. This exploratory pilot study included 358 adult subjects. Clinical, anthropometric, and laboratory data were obtained through interview and access to medical records. The variants IRS1 rs2943634 A˃C, IRS2 rs1865434 C>T, MC3R rs3746619 C>A, and MC4R rs17782313 T>C were analyzed by real-time polymerase chain reaction. Food intake composition was assessed in a group of subjects with obesity (n = 84) before and after a short-term nutritional counseling program (9 weeks). MC4R rs17782313 was associated with increased risk of obesity (P = .034). Multivariate linear regression analysis adjusted by covariates indicated associations of IRS2 rs1865434 with reduced low-density lipoprotein cholesterol and resistin, MC3R rs3746619 with high glycated hemoglobin, and IRS1 rs2943634 and MC4R rs17782313 with increased high-sensitivity C-reactive protein (P < .05). Energy intake and carbohydrate and total fat intakes were reduced after the diet-oriented program (P < .05). Multivariate linear regression analysis showed associations of IRS2 rs1865434 with high basal fiber intake, IRS1 rs2943634 with low postprogram carbohydrate intake, and MC4R rs17782313 with low postprogram total fat and saturated fatty acid intakes (P < .05). Although significant associations did not survive correction for multiple comparisons using the Benjamini-Hochberg method in this exploratory study, polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory status in Brazilian adults. IRS1 and MC4R variants may influence carbohydrate, total fat, and saturated fatty acid intakes in response to a diet-oriented program in subjects with obesity.


Assuntos
Polimorfismo Genético , Diabetes Mellitus , Nutrigenômica , Proteínas Substratos do Receptor de Insulina , Obesidade , Carboidratos , Projetos Piloto , Ingestão de Alimentos , Melanocortinas , Ácidos Graxos
7.
Arq. bras. cardiol ; 120(9 supl. 1): 31-31, set. 2023.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1510901

RESUMO

INTRODUCTION AND OBJECTIVES: Apolipoprotein B plays a crucial role in regulating plasma cholesterol by mediating the interaction of low-density lipoprotein (LDL) with LDL receptors in the liver. Inherited mutations in this gene may increase the risk of developing premature atherosclerotic cardiovascular disease, especially in individuals with familial hypercholesterolemia type 2 (FH2). The aim of this study is to identify APOB variants that may indicate pathogenicity in a sample of the Brazilian population using a data bank exome sequencing study by NGS in a Brazilian population phenotypically diagnosed by clinical and laboratory profile. This finding is going to improve genetic hypercholesteremia diagnosis. Casuistic, Material and METHODS: High quality DNA samples (n=300) were sequenced using an exon- targeted gene sequencing (ETGS) strategy to identify variants in FH-related genes. Pathogenicity classification was based on criteria established by the American College of Medical Genetics and Genomics (ACMG), also using information from ClinVar and pathogenicity scores from previous association studies. RESULTS and CONCLUSIONS: A total of 121 variants were identified in APOB, of which four are novel variants missense (p.Thr626Asn, p.Ile2750Thr, p.Gln2078Lys and p.Met4184Arg). After curating pathogenicity scores, variants were classified according to the ACMG criteria. Among them four as pathogenic or likely pathogenic (p.Pro2739Leu, p.His1923Arg, p.Pro994Leu and p.Pro877Leu), and 21 variants had uncertain significance. Additionally, 92 previously known variants with uncertain significance were classified as benign or likely benign. The results were submitted to Clinvar for actualization of pathogenicity and to improve the molecular diagnosis associating APOB variants with the clinical phenotype of hypercholesterolemia. Financing: FAPESP, CNPQ, CAPES.


Assuntos
Colesterol
8.
Mol. Biol. reports ; 50: 9165-9177, set.2023. ilus
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1525357

RESUMO

BACKGROUND Familial hypercholesterolemia (FH) is caused by pathogenic variants in low-density lipoprotein (LDL) receptor (LDLR) or its associated genes, including apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9), and LDLR adaptor protein 1 (LDLRAP1). However, approximately 40% of the FH patients clinically diagnosed (based on FH phenotypes) may not carry a causal variant in a FH-related gene. Variants located at 3' untranslated region (UTR) of FH-related genes could elucidate mechanisms involved in FH pathogenesis. This study used a computational approach to assess the effects of 3'UTR variants in FH-related genes on miRNAs molecular interactions and to explore the association of these variants with molecular diagnosis of FH. METHODS AND RESULTS Exons and regulatory regions of FH-related genes were sequenced in 83 FH patients using an exon-target gene sequencing strategy. In silico prediction tools were used to study the effects of 3´UTR variants on interactions between miRNAs and target mRNAs. Pathogenic variants in FH-related genes (molecular diagnosis) were detected in 44.6% FH patients. Among 59 3'UTR variants identified, LDLR rs5742911 and PCSK9 rs17111557 were associated with molecular diagnosis of FH, whereas LDLR rs7258146 and rs7254521 and LDLRAP1 rs397860393 had an opposite effect (p < 0.05). 3´UTR variants in LDLR (rs5742911, rs7258146, rs7254521) and PCSK9 (rs17111557) disrupt interactions with several miRNAs, and more stable bindings were found with LDLR (miR-4435, miR-509-3 and miR-502) and PCSK9 (miR-4796). CONCLUSION LDLR and PCSK9 3´UTR variants disturb miRNA:mRNA interactions that could affect gene expression and are potentially associated with molecular diagnosis of FH.


Assuntos
MicroRNAs , Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9
9.
REC: CardioClinics ; 58(4): 303-313, jul.2023. ilus, Tab
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1509834

RESUMO

INTRODUCTION AND OBJECTIVES: Antiplatelet agents such as acetylsalicylic acid (ASA) play a prominent role in preventing atherothrombosis. However, low-responsive patients who will not benefit from an increased dosage of this drug, which can cause bleeding and gastrointestinal irritation, need to be identified. Drugs such as omega-3 fatty acids, which enhance the vasodilating condition and diminish platelet aggregation, can potentiate the anti-aggregating effects of ASA, avoiding its side effects. Thus, we assessed the alternative use of 200mg/day of ASA and 100mg/day of this drug combined with 1g of omega-3 in 152 patients with chronic coronary artery disease. METHODS: Our analysis included platelet function (ASPItest), TBX2 concentrations (ELISA), and SNPs polymorphisms in the rs3842787 and rs3842798 regions of the PTGS1 gene of the COX-1 enzyme and the rs5918 region of the ITGB3 gene of the fibrinogen's receptor subunit glycoprotein IIIa. RESULTS: ASPItest detected 38 non-responders. The reduction of ASPItest values was more significant in this group than in responders and fell to levels of responders in non-responders of the 200mg/day treatment. A rare allele of rs3842787 is associated with a worse ASPItest response, and the rare allele of the rs5918 polymorphism with a worse response related to TBX2 concentration. Both treatments showed no statistically significant difference in hematuria or bleeding, constituting safe treatment alternatives, and omega-3 treatment reduced monocyte levels. CONCLUSIONS: Our results underscore the usefulness of pharmacogenetics for personalized treatments, avoiding gastrointestinal effects and undesirable bleeding.

10.
Gene ; 875jul.2023.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1444289

RESUMO

Familial hypercholesterolemia (FH) is a monogenic disease characterized by high plasma low-density lipoprotein cholesterol (LDL-c) levels and increased risk of premature atherosclerotic cardiovascular disease. Mutations in FH-related genes account for 40% of FH cases worldwide. In this study, we aimed to assess the pathogenic variants in FH-related genes in the Brazilian FH cohort FHBGEP using exon-targeted gene sequencing (ETGS) strategy. FH patients (n = 210) were enrolled at five clinical sites and peripheral blood samples were obtained for laboratory testing and genomic DNA extraction. ETGS was performed using MiSeq platform (Illumina). To identify deleterious variants in LDLR, APOB, PCSK9, and LDLRAP1, the long-reads were subjected to Burrows-Wheeler Aligner (BWA) for alignment and mapping, followed by variant calling using Genome Analysis Toolkit (GATK) and ANNOVAR for variant annotation. The variants were further filtered using in-house custom scripts and classified according to the American College Medical Genetics and Genomics (ACMG) guidelines. A total of 174 variants were identified including 85 missense, 3 stop-gain, 9 splice-site, 6 InDel, and 71 in regulatory regions (3'UTR and 5'UTR). Fifty-two patients (24.7%) had 30 known pathogenic or likely pathogenic variants in FH-related genes according to the American College Medical and Genetics and Genomics guidelines. Fifty-three known variants were classified as benign, or likely benign and 87 known variants have shown uncertain significance. Four novel variants were discovered and classified as such due to their absence in existing databases. In conclusion, ETGS and in silico prediction studies are useful tools for screening deleterious variants and identification of novel variants in FH-related genes, they also contribute to the molecular diagnosis in the FHBGEP cohort.

11.
Gene ; 849(146908)Jan. 2023.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1400150

RESUMO

ABSTRACT: Familial hypercholesterolemia (FH) is a prevalent autosomal genetic disease associated with increased risk of early cardiovascular events and death due to chronic exposure to very high levels of low-density lipoprotein cholesterol (LDL-c). Pathogenic variants in the coding regions of LDLR, APOB and PCSK9 account for most FH cases, and variants in non-coding regions maybe involved in FH as well. Variants in the upstream region of LDLR, APOB and PCSK9 were screened by targeted next-generation sequencing and their effects were explored using in silico tools. Twenty-five patients without pathogenic variants in FH-related genes were selected. 3 kb upstream regions of LDLR, APOB and PCSK9 were sequenced using the AmpliSeq (Illumina) and Miseq Reagent Nano Kit v2 (Illumina). Sequencing data were analyzed using variant discovery and functional annotation tools. Potentially regulatory variants were selected by integrating data from public databases, published data and context-dependent regulatory prediction score. Thirty-four single nucleotide variants (SNVs) in upstream regions were identified (6 in LDLR, 15 in APOB, and 13 in PCSK9). Five SNVs were prioritized as potentially regulatory variants (rs934197, rs9282606, rs36218923, rs538300761, g.55038486A > G). APOB rs934197 was previously associated with increased rate of transcription, which in silico analysis suggests that could be due to reducing binding affinity of a transcriptional repressor. Our findings highlight the importance of variant screening outside of coding regions of all relevant genes. Further functional studies are necessary to confirm that prioritized variants could impact gene regulation and contribute to the FH phenotype.


Assuntos
Receptores de LDL/genética , Pró-Proteína Convertase 9 , Apolipoproteínas B/genética , Fenótipo , Hiperlipoproteinemia Tipo II/genética , LDL-Colesterol/genética , Mutação , Nucleotídeos
12.
Gene ; 853(147084)Dec. 2022.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1410965

RESUMO

ABSTRACT: Familial hypercholesterolemia (FH) is caused by deleterious mutations in the LDLR that increase markedly low-density lipoprotein (LDL) cholesterol and cause premature atherosclerotic cardiovascular disease. Functional effects of pathogenic LDLR variants identified in Brazilian FH patients were assessed using in vitro and in silico studies. Variants in LDLR and other FH-related genes were detected by exon-target gene sequencing. T-lymphocytes were isolated from 26 FH patients, and 3 healthy controls and LDLR expression and activity were assessed by flow cytometry and confocal microscopy. The impact of LDLR missense variants on protein structure was assessed by molecular modeling analysis. Ten pathogenic or likely pathogenic LDLR variants (six missense, two stop-gain, one frameshift, and one in splicing region) and six non-pathogenic variants were identified. Carriers of pathogenic and non-pathogenic variants had lower LDL binding and uptake in activated T-lymphocytes compared to controls (p < 0.05), but these variants did not influence LDLR expression on cell surface. Reduced LDL binding and uptake was also observed in carriers of LDLR null and defective variants. Modeling analysis showed that p.(Ala431Thr), p.(Gly549Asp) and p.(Gly592Glu) disturb intramolecular interactions of LDLR, and p.(Gly373Asp) and p.(Ile488Thr) reduce the stability of the LDLR protein. Docking and molecular interactions analyses showed that p.(Cys184Tyr) and p.(Gly373Asp) alter interaction of LDLR with Apolipoprotein B (ApoB). In conclusion, LDLR null and defective variants reduce LDL binding capacity and uptake in activated T-lymphocytes of FH patients and LDLR missense variants affect LDLR conformational stability and dissociation of the LDLR-ApoB complex, having a potential role in FH pathogenesis.


Assuntos
Linfócitos T , Mutação de Sentido Incorreto , Hiperlipoproteinemia Tipo II , Lipoproteínas LDL
13.
Gene ; 851(146979)Oct. 2022.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1400683

RESUMO

ABSTRACT: PCSK9 gain-of-function (GOF) variants increase degradation of low-density lipoprotein receptor (LDLR) and are potentially associated with Familial Hypercholesterolemia (FH). This study aimed to explore the effects of PCSK9 missense variants on protein structure and interactions with LDLR using molecular modeling analyses and in vitro functional studies. Variants in FH-related genes were identified in a Brazilian FH cohort using an exon-target gene sequencing strategy. Eight PCSK9 missense variants in pro- [p.(E32K) and p.(E57K)], catalytic [p.(R237W), p.(P279T) and p.(A443T)], and C-terminal histidine-cysteine rich (CHR) [p.(R469W), p.(Q619P) and p.(R680Q)] domains were identified. Molecular dynamics analyses revealed that GOF variants p.(E32K) and p.(R469W) increased extreme motions in PCSK9 amino acid backbone fluctuations and affected Hbond and water bridge interactions between the pro-domain and CM1 region of the CHR domain. HEK293FT cells transfected with plasmids carrying p.(E32K) and p.(R469W) variants reduced LDLR expression (8.7 % and 14.8 %, respectively) compared to wild type (p < 0.05) but these GOF variants did not affect PCSK9 expression and secretion. The missense variants p.(P279T) and p.(Q619P) also reduced protein stability and altered Hbond interactions. In conclusion, PCSK9 p.(E32K), p.(R469W), p.(P279T) and p.(Q619P) variants disrupt intramolecular interactions that are essential for PCSK9 structural conformation and biological activity and may have a potential role in FH pathogenesis.


Assuntos
Humanos , Mutação de Sentido Incorreto , Hiperlipoproteinemia Tipo II , Conformação Molecular , Pró-Proteína Convertase 9 , LDL-Colesterol/genética , LDL-Colesterol/metabolismo
14.
Front. immunol ; 13(1020572): 1-6, Sept. 2022. graf
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1396604

RESUMO

Chagas disease is a parasitic disease from South America, affecting around 7 million people worldwide. Decades after the infection, 30% of people develop chronic forms, including Chronic Chagas Cardiomyopathy (CCC), for which no treatment exists. Two stages characterized this form: the moderate form, characterized by a heart ejection fraction (EF) ≥ 0.4, and the severe form, associated to an EF < 0.4. We propose two sets of DNA methylation biomarkers which can predict in blood CCC occurrence, and CCC stage. This analysis, based on machine learning algorithms, makes predictions with more than 95% accuracy in a test cohort. Beyond their predictive capacity, these CpGs are located near genes involved in the immune response, the nervous system, ion transport or ATP synthesis, pathways known to be deregulated in CCCs. Among these genes, some are also differentially expressed in heart tissues. Interestingly, the CpGs of interest are tagged to genes mainly involved in nervous and ionic processes. Given the close link between methylation and gene expression, these lists of CpGs promise to be not only good biomarkers, but also good indicators of key elements in the development of this pathology.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Metilação , Doenças Parasitárias , Terapêutica , Biomarcadores
15.
Front. immunol ; 13(958200): 01-16, Aug. 2022. graf, ilus, tab
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1400349

RESUMO

Abstract: Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS's DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.


Assuntos
Humanos , Cardiomiopatia Chagásica , Doença de Chagas/genética , Fatores de Transcrição/genética , Trypanosoma cruzi , Epigênese Genética , Metilação
16.
Sci. rep. (Nat. Publ. Group) ; 12(1): 18612, July 2022. graf, tab
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1410947

RESUMO

ABSTRACT: TREML4 and other members of the triggering receptor expressed in the myeloid cell family are associated with a risk of atherosclerosis and progression in coronary artery disease, acute coronary syndrome, and coronary artery calcification. Herein, the relationship between TREML4 expression and its polymorphisms (rs2803495 and rs280396) was evaluated in patients with subclinical atherosclerosis (n = 340) and heart failure post-acute myocardial infarction (MI) (n = 68) for the first time. TREML4 variants rs2803495 (A > G) and rs2803496 (T > C) and leukocyte mRNA expression was analyzed by qRT-PCR. The rs2803495 G allele was associated with TREML4 expression (OR 8.01, CI 3.78-16.99, p < 0.001). Patients carrying the rs2803496 C minor allele (TC/CC genotypes) were more likely to express TREML4 than those without the C allele (OR 10.42, CI 4.76-22.78, p < 0.001), as well as having higher levels of TREML4 expression (OR 4.88, CI 2.35-10.12, p < 0.001). Thus, we report for the first time that TREML4 is not associated with the early stages of atherosclerotic plaque formation and later stages after MI. In conclusion, TREML4 mRNA expression in blood leukocytes is influenced by minor alleles (G and C) and may regulate differently during the atherosclerosis progression stages, but not in asymptomatic atherosclerosis disease and post-MI.


Assuntos
Doença da Artéria Coronariana/genética , Aterosclerose , Infarto do Miocárdio/complicações , Polimorfismo Genético , RNA Mensageiro/genética , Receptores Imunológicos/metabolismo , Fatores de Risco , Alelos , Genótipo , Leucócitos/metabolismo
17.
Epigenomics (Online) ; 14(14)July 2022.
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1381722

RESUMO

ABSTRACT AIM: This study investigated the influence of antidepressant drugs on methylation status of KCNE1, KCNH2 and SCN5A promoters and ECG parameters in adult psychiatric patients. MATERIALS & METHODS: Electrocardiographic evaluation (24 h) and blood samples were obtained from 34 psychiatric patients before and after 30 days of antidepressant therapy. Methylation of promoter CpG sites of KCNE1, KCNH2 and SCN5A was analyzed by pyrosequencing. RESULTS: Three CpG and four CpG sites of KCNE1 and SCN5A, respectively, had increased % methylation after treatment. Principal component analysis showed correlations of the methylation status with electrocardiographic variables, antidepressant doses and patient age. CONCLUSION: Short-term treatment with antidepressant drugs increase DNA methylation in KCNE1 and SCN5A promoters, which may induce ECG alterations in psychiatric patients.


Assuntos
Humanos , Adulto , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Células Sanguíneas , Regiões Promotoras Genéticas/genética , Ilhas de CpG , Metilação de DNA , Canais Iônicos
18.
Pharmaceutics ; 14(5): 1-20, Apr.2022. tab, ilus, graf
Artigo em Inglês | CONASS, SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1371140

RESUMO

Statins are the first-line treatment for familial hypercholesterolemia (FH), but response is highly variable due to genetic and nongenetic factors. Here, we explored the association between response and genetic variability in 114 Brazilian adult FH patients. Specifically, a panel of 84 genes was analyzed by exon-targeted gene sequencing (ETGS), and the functional impact of variants in pharmacokinetic (PK) genes was assessed using an array of functionality prediction methods. Low-density lipoprotein cholesterol (LDL-c) response to statins (reduction ≥ 50%) and statin-related adverse event (SRAE) risk were assessed in carriers of deleterious variants in PK-related genes using multivariate linear regression analyses. Fifty-eight (50.8%) FH patients responded to statins, and 24 (21.0%) had SRAE. Results of the multivariate regression analysis revealed that ABCC1 rs45511401 significantly increased LDL-c reduction after statin treatment (p < 0.05). In silico analysis of the amino-acid change using molecular docking showed that ABCC1 rs45511401 possibly impairs statin efflux. Deleterious variants in PK genes were not associated with an increased risk of SRAE. In conclusion, the deleterious variant ABCC1 rs45511401 enhanced LDL-c response in Brazilian FH patients. As such, this variant might be a promising candidate for the individualization of statin therapy.


Assuntos
Farmacogenética , Inibidores de Hidroximetilglutaril-CoA Redutases , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Mialgia , Hiperlipoproteinemia Tipo II
19.
Braz. J. Pharm. Sci. (Online) ; 58: e201188, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420506

RESUMO

Abstract Mycophenolic acid (MPA) inhibits IMPDH, involved in the guanosine nucleotides synthesis, and prevents DNA replication in immune cells. The repression of cell and humoral immunity by MPA induces allograft tolerance preventing acute rejection in solid organ transplantation. MPA is an effective and safe drug, but genetic and non-genetic factors have been implicated in the interindividual variability of drug response. Several studies have shown the impact of variants of pharmacokinetics or pharmacodynamics-related genes on MPA response in kidney transplantation. This review explored further the influence of genes involved in the immune response on clinical outcomes of kidney recipients on short- or long-term MPA treatment. Variants in genes related to T cell activation (CD28, CTL4, ICOS, PDPC1), pro-inflammatory cytokines (IL2, IL6, IL12A, IL12B, TNF, IFNG), immunomodulatory cytokines (IL4, IL10, TGFB1), and innate immune response (CD14, TLR2, TLR4) were shown to be associated with increased risk of acute rejection, graft function or survival, chronic graft nephropathy, viral infections or MPA-induced myelotoxicity. Some of the significant pharmacogenetic associations were confirmed by meta-analyses of kidney transplantation. These findings are suggestive that variants in immune response-related genes contribute to the variability of MPA response, and have potential application as biomarkers of acute rejection in kidney transplantation.


Assuntos
Farmacogenética/instrumentação , Transplante de Rim/classificação , Ácido Micofenólico/análise , Preparações Farmacêuticas/administração & dosagem , Imunidade/imunologia
20.
BMC cancer ; 21(1): 575-678, May., 2021. ilus, graf, tab
Artigo em Inglês | SES-SP, CONASS, SESSP-IDPCPROD, SES-SP | ID: biblio-1224518

RESUMO

BACKGROUND: No biomarker is available for identifying cancer patients at risk of developing nephrotoxicity when treated with cisplatin. METHODS: We performed microRNA (miRNA) sequencing using plasma collected 5 days after cisplatin treatment (D5) from twelve patients with head and neck cancer with and without nephrotoxicity (grade ≥ 2 increased serum creatinine). The most differentially expressed miRNAs between the two groups were selected for quantification at baseline and D5 in a larger cohort of patients. The association between miRNAs and nephrotoxicity was evaluated by calculating the odds ratio (OR) from univariate logistic regression. Receiver operating characteristic curves (ROC) were used to estimate the area under the curve (AUC), sensitivity, and specificity. RESULTS: MiR-3168 (p = 1.98 × 10− 8 ), miR-4718 (p = 4.24 × 10− 5 ), and miR-6125 (p = 6.60 × 10− 5 ) were the most differentially expressed miRNAs and were further quantified in 43, 48, and 53 patients, respectively. The baseline expression of miR-3168 (p = 0.0456, OR = 1.03, 95% CI: 1.00­1.06) and miR-4718 (p = 0.0388, OR = 1.56, 95% CI: 1.03­ 2.46) were associated with an increased risk of nephrotoxicity, whereas miR-6125 showed a trend (p = 0.0618, OR = 1.73, 95% CI: 0.98­3.29). MiR-4718 showed the highest AUC (0.77, 95% CI: 0.61­0.93) with sensitivity of 66.76 and specificity of 79.49. CONCLUSIONS: We have provided evidence of baseline plasmatic expression of miR-3168, miR-6125, and miR-4718 as potential predictors of cisplatin-induced nephrotoxicity.


Assuntos
Cisplatino , MicroRNAs , Nefropatias , Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA